|
29 | 29 | parser.add_argument('--img_input', action="store_true", default=False, help='Use image as states')
|
30 | 30 | parser.add_argument('--in_channels', type=int, default=3, help='Number of image channels for image input')
|
31 | 31 | parser.add_argument('--depth', type=int, default=3, help='Depth for CNN architecture for image input')
|
32 |
| -parser.add_argument('--multiplier', type=int, default=32, help='Channel multiplier for CNN architecture for image input') |
| 32 | +parser.add_argument('--multiplier', type=int, default=16, help='Channel multiplier for CNN architecture for image input') |
33 | 33 | parser.add_argument('--order', type=int, default=3, help='Store past (order) of frames for image input')
|
34 |
| -parser.add_argument('--action_embed_dim', type=int, default=32, help='Embedding dimension for actions for image input') |
35 |
| -parser.add_argument('--hidden_dim', type=int, default=512, help='List of hidden dims for embedding networks') |
| 34 | +parser.add_argument('--action_embed_dim', type=int, default=256, help='Embedding dimension for actions for image input') |
| 35 | +parser.add_argument('--hidden_dim', type=int, default=256, help='Hidden dims for embedding networks') |
36 | 36 | parser.add_argument('--crop_dim', type=int, default=32, help='Crop dim for image inputs')
|
37 | 37 |
|
38 | 38 | # training hp params
|
39 | 39 | parser.add_argument('--n_episodes', type=int, default=1000, help='Number of episodes')
|
40 | 40 | parser.add_argument('--batch_size', type=int, default=512, help='Batch size')
|
41 |
| -parser.add_argument('--alpha', type=float, default=0.001, help='Learning rate actor') |
42 |
| -parser.add_argument('--beta', type=float, default=0.001, help='Learning rate critic') |
| 41 | +parser.add_argument('--alpha', type=float, default=3e-4, help='Learning rate actor') |
| 42 | +parser.add_argument('--beta', type=float, default=3e-4, help='Learning rate critic') |
43 | 43 | parser.add_argument('--warmup', type=int, default=1000, help='Number of warmup steps')
|
44 | 44 | parser.add_argument('--d', type=int, default=2, help='Skip iteration')
|
45 |
| -parser.add_argument('--max_size', type=int, default=1000000, help='Replay buffer size') |
| 45 | +parser.add_argument('--max_size', type=int, default=100000, help='Replay buffer size') |
46 | 46 | parser.add_argument('--no_render', action="store_true", default=False, help='Whether to render')
|
47 | 47 | parser.add_argument('--window_size', type=int, default=100, help='Score tracking moving average window size')
|
48 | 48 |
|
|
58 | 58 | import pyvirtualdisplay
|
59 | 59 | _display = pyvirtualdisplay.Display(visible=False, size=(1400, 900))
|
60 | 60 | _ = _display.start()
|
| 61 | + |
61 | 62 | # paths
|
62 | 63 | Path(args.checkpoint_dir).mkdir(parents=True, exist_ok=True)
|
63 | 64 | Path(args.log_dir).mkdir(parents=True, exist_ok=True)
|
|
78 | 79 | score_history = deque([], maxlen=args.window_size)
|
79 | 80 | episodes = tqdm(range(args.n_episodes))
|
80 | 81 |
|
81 |
| - for e in episodes: |
82 |
| - # resetting |
83 |
| - state = env.reset() |
84 |
| - if args.img_input: |
85 |
| - state_queue = deque( |
86 |
| - [preprocess_img(state['pixels'], args.crop_dim) for _ in range(args.order)], |
87 |
| - maxlen=args.order) |
88 |
| - state = torch.cat(list(state_queue), 1).cpu().numpy() |
89 |
| - done, score = False, 0 |
90 |
| - |
91 |
| - while not done: |
92 |
| - action = agent.choose_action(state) |
93 |
| - state_, reward, done, _ = env.step(action) |
94 |
| - if isinstance(reward, np.ndarray): |
95 |
| - reward = reward[0] |
96 |
| - if args.img_input: |
97 |
| - state_queue.append(preprocess_img(state_['pixels'], args.crop_dim)) |
98 |
| - state_ = torch.cat(list(state_queue), 1).cpu().numpy() |
99 |
| - agent.remember(state, action, reward, state_, done) |
100 |
| - agent.learn() |
101 |
| - |
102 |
| - # reset, log & render |
103 |
| - score += reward |
104 |
| - state = state_ |
105 |
| - episodes.set_postfix({'Reward': reward}) |
106 |
| - if args.no_render: |
107 |
| - continue |
108 |
| - env.render() |
109 |
| - |
110 |
| - # logging |
111 |
| - score_history.append(score) |
112 |
| - moving_avg = sum(score_history) / len(score_history) |
113 |
| - agent.add_scalar('Average Score', moving_avg, global_step=e) |
114 |
| - |
115 |
| - # save weights @ best score |
116 |
| - if moving_avg > best_score: |
117 |
| - best_score = moving_avg |
118 |
| - agent.save_networks() |
119 |
| - |
120 |
| - tqdm.write(f'Episode: {e + 1}/{args.n_episodes}, \ |
121 |
| - Episode Score: {score}, \ |
122 |
| - Average Score: {moving_avg}, \ |
123 |
| - Best Score: {best_score}') |
| 82 | + # for e in episodes: |
| 83 | + # # resetting |
| 84 | + # state = env.reset() |
| 85 | + # if args.img_input: |
| 86 | + # state_queue = deque( |
| 87 | + # [preprocess_img(state['pixels'], args.crop_dim) for _ in range(args.order)], |
| 88 | + # maxlen=args.order) |
| 89 | + # state = torch.cat(list(state_queue), 1).cpu().numpy() |
| 90 | + # done, score = False, 0 |
| 91 | + |
| 92 | + # while not done: |
| 93 | + # action = agent.choose_action(state) |
| 94 | + # state_, reward, done, _ = env.step(action) |
| 95 | + # if isinstance(reward, np.ndarray): |
| 96 | + # reward = reward[0] |
| 97 | + # if args.img_input: |
| 98 | + # state_queue.append(preprocess_img(state_['pixels'], args.crop_dim)) |
| 99 | + # state_ = torch.cat(list(state_queue), 1).cpu().numpy() |
| 100 | + # agent.remember(state, action, reward, state_, done) |
| 101 | + # agent.learn() |
| 102 | + |
| 103 | + # # reset, log & render |
| 104 | + # score += reward |
| 105 | + # state = state_ |
| 106 | + # episodes.set_postfix({'Reward': reward, 'Iteration': agent.time_step}) |
| 107 | + # if args.no_render: |
| 108 | + # continue |
| 109 | + # env.render() |
| 110 | + |
| 111 | + # # logging |
| 112 | + # score_history.append(score) |
| 113 | + # moving_avg = sum(score_history) / len(score_history) |
| 114 | + # agent.add_scalar('Average Score', moving_avg, global_step=e) |
| 115 | + |
| 116 | + # # save weights @ best score |
| 117 | + # if moving_avg > best_score: |
| 118 | + # best_score = moving_avg |
| 119 | + # agent.save_networks() |
| 120 | + |
| 121 | + # tqdm.write(f'Episode: {e + 1}/{args.n_episodes}, \ |
| 122 | + # Episode Score: {score}, \ |
| 123 | + # Average Score: {moving_avg}, \ |
| 124 | + # Best Score: {best_score}') |
0 commit comments