|
37 | 37 | parser.add_argument('--mlp', default=True, type=bool, help='feature dimension')
|
38 | 38 |
|
39 | 39 | # misc.
|
40 |
| -parser.add_argument('--data_root', default='../data', type=str, help='path to data') |
41 |
| -parser.add_argument('--logs_root', default='logs', type=str, help='path to logs') |
42 |
| -parser.add_argument('--check_point', default='check_point/moco.pth', type=str, help='path to model weights') |
| 40 | +parser.add_argument('--data_root', default='data', type=str, help='path to data') |
| 41 | +parser.add_argument('--logs_root', default='moco/logs', type=str, help='path to logs') |
| 42 | +parser.add_argument('--check_point', default='moco/check_point/moco.pth', type=str, help='path to model weights') |
43 | 43 |
|
44 | 44 | args = parser.parse_args()
|
45 | 45 |
|
|
73 | 73 | test_data = CIFAR10(root=args.data_root, train=False, transform=test_transform, download=True)
|
74 | 74 | test_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False, num_workers=28)
|
75 | 75 |
|
76 |
| - Path(args.check_point.split('/')[0]).mkdir(parents=True, exist_ok=True) |
77 |
| - Path(args.logs_root).mkdir(parents=True, exist_ok=True) |
| 76 | + Path(args.check_point.split('/')[1]).mkdir(parents=True, exist_ok=True) |
| 77 | + Path(args.logs_root.split('/')[1]).mkdir(parents=True, exist_ok=True) |
78 | 78 |
|
79 | 79 | f_q = MoCo(args).cuda()
|
80 | 80 | f_k = get_momentum_encoder(f_q)
|
|
104 | 104 | with torch.no_grad():
|
105 | 105 | momentum_update(f_k, f_q, args.m)
|
106 | 106 | train_losses.append(loss.item())
|
107 |
| - pbar.set_postfix({'Loss': loss.item(), 'Learning Rate': scheduler.get_last_lr()}) |
| 107 | + pbar.set_postfix({'Loss': loss.item(), 'Learning Rate': scheduler.get_last_lr()[0]}) |
108 | 108 |
|
109 | 109 | writer.add_scalar('Train Loss', sum(train_losses) / len(train_losses), global_step=epoch)
|
110 | 110 | torch.save(f_q.state_dict(), args.check_point)
|
|
0 commit comments