forked from cobriniklab/seuratTools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
executable file
·171 lines (112 loc) · 5.68 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
eval = FALSE,
collapse = TRUE,
comment = "#>",
dpi = 900,
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# seuratTools
This package includes a set of Shiny apps for exploring single cell RNA datasets processed with <a href="https://github.com/satijalab/seurat" target="_blank" rel="noopener noreferrer">Seurat</a>
A demo using a human gene transcript dataset from Shayler et al. (link) is available <a href="https://docker.saban.chla.usc.edu/cobrinik/app/seuratApp/" target="_blank" rel="noopener noreferrer">here</a>
There are also convenient functions for:
- Clustering and Dimensional Reduction of Raw Sequencing Data.
- <a href="https://satijalab.org/seurat/archive/v3.0/integration.html" target="_blank" rel="noopener noreferrer">Integration and Label Transfer</a>
- Louvain Clustering at a Range of Resolutions
- Cell cycle state regression and labeling
- RNA velocity calculation with <a href="https://velocyto.org/" target="_blank" rel="noopener noreferrer">Velocyto.R</a> and <a href="https://scvelo.readthedocs.io/" target="_blank" rel="noopener noreferrer">scvelo</a>
> [!WARNING]
> seuratTools was designed for full-length smart-seq based single cell data. Default settings may not be appropriate for droplet (10x) data, though most can be adjusted. Keep in mind [best practices](https://satijalab.org/seurat/articles/pbmc3k_tutorial) regarding normalization, dimensional reduction, etc. when using.
## Installation
You can install the released version of seuratTools from <a href="https://github.com/whtns/seuratTools" target="_blank" rel="noopener noreferrer">github</a> with:
### Install locally and run in three steps:
You can install seuratTools locally using the following steps:
```{r, eval=FALSE}
install.packages("devtools")
devtools::install_github("whtns/seuratTools")
seuratTools::create_project_db()
```
You can also customize the location of the app using these steps:
```{r, eval=FALSE}
devtools::install_github("whtns/seuratTools")
seuratTools::create_project_db(destdir = "/your/path/to/app")
```
## Getting Started
First, load seuratTools and all other packages required
```{r}
library(seuratTools)
library(Seurat)
library(tidyverse)
library(ggraph)
```
## TLDR
seuratTools provides a single command to:
- construct a Seurat object
- filter genes by minimum expression and ubiquity
- normalize and scale expression by any of several methods packaged in Seurat
## Run clustering on a single seurat object
By default clustering will be run at ten different resolutions between 0.2 and 2.0. Any resolution can be specified by providing the resolution argument as a numeric vector.
```{r, cache = FALSE, eval = FALSE}
clustered_seu <- clustering_workflow(human_gene_transcript_seu,
experiment_name = "seurat_hu_trans",
organism = "human"
)
```
## Get a first look at a processed dataset using an interactive shiny app
```{r, eval = FALSE}
minimalSeuratApp(human_gene_transcript_seu)
```
## Set up a seurat object
We start with a gene by cell matrix of count/UMI values and a table of cell metadata
```{r, eval=FALSE}
human_count[1:5, 1:5]
head(human_meta)
```
```{r, eval = FALSE, echo=FALSE}
knitr::kable(human_count[1:5, 1:5])
knitr::kable(head(human_meta))
```
We can then create a seurat object in the usual manner using `CreatSeuratObject` function
```{r}
myseu <- CreateSeuratObject(human_count, assay = "gene", meta.data = human_meta)
```
## Preprocess the seurat object
seuratTools includes a handy function to preprocess the data that handles normalization and scaling required for downstream analysis. If needed, parameters can be specified by the user.
```{r, message = FALSE}
myseu <- seurat_preprocess(myseu)
```
This single function includes seurat sub-functions that normalizes, identifies highly variable features and scales the data
## Perform dimension reduction
seuratTools also implements a standardized dimension reduction step to select variable features at a user-specified threshold and perform PCA, tSNE, and UMAP. The default assay the dimension reduction is being run on is "gene".
```{r, results=FALSE, warning = FALSE, message=FALSE}
myseu <- seurat_reduce_dimensions(myseu, assay = "RNA")
```
## Community detection by clustering
Clustering analysis is performed via Louvain(default) or alternative algorithms available in Seurat. Clustering is performed at a range of resolutions with default value ranging from 0.2 to 2 and pca reduction
```{r, message = FALSE, result = FALSE, chache = FALSE, warning = FALSE}
seu <- seurat_cluster(seu = Dim_Red_seu, resolution = seq(0.2, 2, by = 0.2))
```
This function produces clustering analysis via two steps performed using two different sub-functions
## Split included dataset based on collection technology
seuratTools includes a function, `SplitObject`, which is capable of splitting the dataset into subsets based on a single attribute indicated by the split.by argument
```{r}
split_human <- SplitObject(human_gene_transcript_seu, split.by = "dataset")
```
In this example the `split_human` object consists of a list of subsetted objects which are split based on batch
## Run seurat batch integration on 'child' projects
When joint analysis of 2 or more datasets is to be performed `integration_workflow` function can be used, which takes in a list of seurat objects as input and returns an integrated seurat object
```{r, results="hide", cache = FALSE}
integrated_seu <- integration_workflow(split_human)
```
## View analysis details
```{r, eval = FALSE}
Misc(integrated_seu, "experiment") %>%
tibble::enframe() %>%
knitr::kable()
```