Skip to content

Amberlan1001/eat_tensorflow2_in_30_days_ipynb

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

eat_tensorflow2_in_30_days_ipynb

切换至中文版

eat_tensorflow2_in_30_days_ipynb is Jupyter Notebook running version of 《Eat That TensorFlow2.0 in 30 Days》.

Thanks to lyhue1991 for the tutorial.

1、chapter catalogue ⏰

Click on the corresponding blue heading to access the chapter。

Date Contents Difficulties Est. Time Status
  Chapter 1: Modeling Procedure of TensorFlow ⭐️ 0hour
Day 1 1-1 Example: Modeling Procedure for Structured Data ⭐️⭐️⭐️ 1hour
Day 2 1-2 Example: Modeling Procedure for Images ⭐️⭐️⭐️⭐️ 2hour
Day 3 1-3 Example: Modeling Procedure for Texts ⭐️⭐️⭐️⭐️⭐️ 2hour
Day 4 1-4 Example: Modeling Procedure for Temporal Sequences ⭐️⭐️⭐️⭐️⭐️ 2hour
  Chapter 2: Key Concepts of TensorFlow ⭐️ 0hour
Day 5 2-1 Data Structure of Tensor ⭐️⭐️⭐️⭐️ 1hour
Day 6 2-2 Three Types of Graph ⭐️⭐️⭐️⭐️⭐️ 2hour
Day 7 2-3 Automatic Differentiate ⭐️⭐️⭐️ 1hour
  Chapter 3: Hierarchy of TensorFlow ⭐️ 0hour
Day 8 3-1 Low-level API: Demonstration ⭐️⭐️ 0.5hour
Day 9 3-2 Mid-level API: Demonstration ⭐️⭐️⭐️ 0.5hour
Day 10 3-3 High-level API: Demonstration ⭐️⭐️⭐️ 0.5hour
  Chapter 4: Low-level API in TensorFlow ⭐️ 0hour
Day 11 4-1 Structural Operations of the Tensor ⭐️⭐️⭐️⭐️⭐️ 2hour
Day 12 4-2 Mathematical Operations of the Tensor ⭐️⭐️⭐️⭐️ 1hour
Day 13 4-3 Rules of Using the AutoGraph ⭐️⭐️⭐️ 0.5hour
Day 14 4-4 Mechanisms of the AutoGraph ⭐️⭐️⭐️⭐️⭐️ 2hour
Day 15 4-5 AutoGraph and tf.Module ⭐️⭐️⭐️⭐️ 1hour
  Chapter 5: Mid-level API in TensorFlow ⭐️ 0hour
Day 16 5-1 Dataset ⭐️⭐️⭐️⭐️⭐️ 2hour
Day 17 5-2 feature_column ⭐️⭐️⭐️⭐️ 1hour ✅
Day 18 5-3 activation ⭐️⭐️⭐️ 0.5hour
Day 19 5-4 layers ⭐️⭐️⭐️ 1hour
Day 20 5-5 losses ⭐️⭐️⭐️ 1hour
Day 21 5-6 metrics ⭐️⭐️⭐️ 1hour
Day 22 5-7 optimizers ⭐️⭐️⭐️ 0.5hour
Day 23 5-8 callbacks ⭐️⭐️⭐️⭐️ 1hour
  Chapter 6: High-level API in TensorFlow ⭐️ 0hour
Day 24 6-1 Three Ways of Modeling ⭐️⭐️⭐️ 1hour
Day 25 6-2 Three Ways of Training ⭐️⭐️⭐️⭐️ 1hour
Day 26 6-3 Model Training Using Single GPU ⭐️⭐️ 0.5hour
Day 27 6-4 Model Training Using Multiple GPUs ⭐️⭐️ 0.5hour
Day 28 6-5 Model Training Using TPU ⭐️⭐️ 0.5hour
Day 29 6-6 Model Deploying Using tensorflow-serving ⭐️⭐️⭐️⭐️ 1hour
Day 30 6-7 Call Tensorflow Model Using spark-scala ⭐️⭐️⭐️⭐️⭐️ 2hour

2、operating environment

All the source codes are tested in jupyter. It is suggested to clone the repository to local machine and run them in jupyter for an interactive learning experience.

#Note: all the codes are tested under TensorFlow 2.1
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple  -U tensorflow
import tensorflow as tf

tf.print("tensorflow version:",tf.__version__)
tensorflow version: 2.1.0

About

30天掌握Tensorflow2.1 Jupyter Notebook 版

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published