Skip to content

Amberlan1001/eat_tensorflow2_in_30_days_ipynb

Repository files navigation

eat_tensorflow2_in_30_days_ipynb

eat_tensorflow2_in_30_days_ipynb is Jupyter Notebook running version of 《Eat That TensorFlow2.0 in 30 Days》.

Thanks to lyhue1991 for the tutorial.

1、chapter catalogue ⏰

Click on the corresponding blue heading to access the chapter。

Date Contents Difficulties Est. Time Status
  Chapter 1: Modeling Procedure of TensorFlow ⭐️ 0hour
Day 1 1-1 Example: Modeling Procedure for Structured Data ⭐️⭐️⭐️ 1hour
Day 2 1-2 Example: Modeling Procedure for Images ⭐️⭐️⭐️⭐️ 2hour
Day 3 1-3 Example: Modeling Procedure for Texts ⭐️⭐️⭐️⭐️⭐️ 2hour
Day 4 1-4 Example: Modeling Procedure for Temporal Sequences ⭐️⭐️⭐️⭐️⭐️ 2hour
  Chapter 2: Key Concepts of TensorFlow ⭐️ 0hour
Day 5 2-1 Data Structure of Tensor ⭐️⭐️⭐️⭐️ 1hour
Day 6 2-2 Three Types of Graph ⭐️⭐️⭐️⭐️⭐️ 2hour
Day 7 2-3 Automatic Differentiate ⭐️⭐️⭐️ 1hour
  Chapter 3: Hierarchy of TensorFlow ⭐️ 0hour
Day 8 3-1 Low-level API: Demonstration ⭐️⭐️ 0.5hour
Day 9 3-2 Mid-level API: Demonstration ⭐️⭐️⭐️ 0.5hour
Day 10 3-3 High-level API: Demonstration ⭐️⭐️⭐️ 0.5hour
  Chapter 4: Low-level API in TensorFlow ⭐️ 0hour 🛠️
Day 11 4-1 Structural Operations of the Tensor ⭐️⭐️⭐️⭐️⭐️ 2hour 🛠️
Day 12 4-2 Mathematical Operations of the Tensor ⭐️⭐️⭐️⭐️ 1hour 🛠️
Day 13 4-3 Rules of Using the AutoGraph ⭐️⭐️⭐️ 0.5hour 🛠️
Day 14 4-4 Mechanisms of the AutoGraph ⭐️⭐️⭐️⭐️⭐️ 2hour 🛠️
Day 15 4-5 AutoGraph and tf.Module ⭐️⭐️⭐️⭐️ 1hour 🛠️
  Chapter 5: Mid-level API in TensorFlow ⭐️ 0hour 🛠️
Day 16 5-1 Dataset ⭐️⭐️⭐️⭐️⭐️ 2hour 🛠️
Day 17 5-2 feature_column ⭐️⭐️⭐️⭐️ 1hour 🛠️
Day 18 5-3 activation ⭐️⭐️⭐️ 0.5hour 🛠️
Day 19 5-4 layers ⭐️⭐️⭐️ 1hour 🛠️
Day 20 5-5 losses ⭐️⭐️⭐️ 1hour 🛠️
Day 21 5-6 metrics ⭐️⭐️⭐️ 1hour 🛠️
Day 22 5-7 optimizers ⭐️⭐️⭐️ 0.5hour 🛠️
Day 23 5-8 callbacks ⭐️⭐️⭐️⭐️ 1hour 🛠️
  Chapter 6: High-level API in TensorFlow ⭐️ 0hour 🛠️
Day 24 6-1 Three Ways of Modeling ⭐️⭐️⭐️ 1hour 🛠️
Day 25 6-2 Three Ways of Training ⭐️⭐️⭐️⭐️ 1hour 🛠️
Day 26 6-3 Model Training Using Single GPU ⭐️⭐️ 0.5hour 🛠️
Day 27 6-4 Model Training Using Multiple GPUs ⭐️⭐️ 0.5hour 🛠️
Day 28 6-5 Model Training Using TPU ⭐️⭐️ 0.5hour 🛠️
Day 29 6-6 Model Deploying Using tensorflow-serving ⭐️⭐️⭐️⭐️ 1hour 🛠️
Day 30 6-7 Call Tensorflow Model Using spark-scala ⭐️⭐️⭐️⭐️⭐️ 2hour 🛠️

2、operating environment

All the source codes are tested in jupyter. It is suggested to clone the repository to local machine and run them in jupyter for an interactive learning experience.

#Note: all the codes are tested under TensorFlow 2.1
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple  -U tensorflow
import tensorflow as tf

tf.print("tensorflow version:",tf.__version__)
tensorflow version: 2.1.0

About

30天掌握Tensorflow2.1 Jupyter Notebook 版

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published