-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtransport.py
490 lines (416 loc) · 16.2 KB
/
transport.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import enum
import math
from typing import Callable
import numpy as np
import torch as th
from . import path
from .integrators import ode, sde
from .utils import mean_flat, expand_dims
from .dpm_solver import NoiseScheduleFlow, model_wrapper, DPM_Solver
class ModelType(enum.Enum):
"""
Which type of output the model predicts.
"""
NOISE = enum.auto() # the model predicts epsilon
SCORE = enum.auto() # the model predicts \nabla \log p(x)
VELOCITY = enum.auto() # the model predicts v(x)
class PathType(enum.Enum):
"""
Which type of path to use.
"""
LINEAR = enum.auto()
GVP = enum.auto()
VP = enum.auto()
class WeightType(enum.Enum):
"""
Which type of weighting to use.
"""
NONE = enum.auto()
VELOCITY = enum.auto()
LIKELIHOOD = enum.auto()
class Transport:
def __init__(self, *, model_type, path_type, loss_type, train_eps, sample_eps, snr_type, do_shift, seq_len):
path_options = {
PathType.LINEAR: path.ICPlan,
PathType.GVP: path.GVPCPlan,
PathType.VP: path.VPCPlan,
}
self.loss_type = loss_type
self.model_type = model_type
self.path_sampler = path_options[path_type]()
self.train_eps = train_eps
self.sample_eps = sample_eps
self.snr_type = snr_type
self.do_shift = do_shift
self.seq_len = seq_len
def prior_logp(self, z):
"""
Standard multivariate normal prior
Assume z is batched
"""
shape = th.tensor(z.size())
N = th.prod(shape[1:])
_fn = lambda x: -N / 2.0 * np.log(2 * np.pi) - th.sum(x**2) / 2.0
return th.vmap(_fn)(z)
def check_interval(
self,
train_eps,
sample_eps,
*,
diffusion_form="SBDM",
sde=False,
reverse=False,
eval=False,
last_step_size=0.0,
):
t0 = 0
t1 = 1
eps = train_eps if not eval else sample_eps
if type(self.path_sampler) in [path.VPCPlan]:
t1 = 1 - eps if (not sde or last_step_size == 0) else 1 - last_step_size
elif (type(self.path_sampler) in [path.ICPlan, path.GVPCPlan]) and (
self.model_type != ModelType.VELOCITY or sde
): # avoid numerical issue by taking a first semi-implicit step
t0 = eps if (diffusion_form == "SBDM" and sde) or self.model_type != ModelType.VELOCITY else 0
t1 = 1 - eps if (not sde or last_step_size == 0) else 1 - last_step_size
if reverse:
t0, t1 = 1 - t0, 1 - t1
return t0, t1
def sample(self, x1):
"""Sampling x0 & t based on shape of x1 (if needed)
Args:
x1 - data point; [batch, *dim]
"""
if isinstance(x1, (list, tuple)):
x0 = [th.randn_like(img_start) for img_start in x1]
else:
x0 = th.randn_like(x1)
t0, t1 = self.check_interval(self.train_eps, self.sample_eps)
if self.snr_type.startswith("uniform"):
assert t0 == 0.0 and t1 == 1.0, "not implemented."
if "_" in self.snr_type:
_, t0, t1 = self.snr_type.split("_")
t0, t1 = float(t0), float(t1)
t = th.rand((len(x1),)) * (t1 - t0) + t0
elif self.snr_type == "lognorm":
u = th.normal(mean=0.0, std=1.0, size=(len(x1),))
t = 1 / (1 + th.exp(-u)) * (t1 - t0) + t0
else:
raise NotImplementedError("Not implemented snr_type %s" % self.snr_type)
if self.do_shift:
base_shift: float = 0.5
max_shift: float = 1.15
mu = self.get_lin_function(y1=base_shift, y2=max_shift)(self.seq_len)
t = self.time_shift(mu, 1.0, t)
t = t.to(x1[0])
return t, x0, x1
def time_shift(self, mu: float, sigma: float, t: th.Tensor):
# the following implementation was original for t=0: clean / t=1: noise
# Since we adopt the reverse, the 1-t operations are needed
t = 1 - t
t = math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
t = 1 - t
return t
def get_lin_function(
self, x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def training_losses(self, model, x1, model_kwargs=None):
"""Loss for training the score model
Args:
- model: backbone model; could be score, noise, or velocity
- x1: datapoint
- model_kwargs: additional arguments for the model
"""
if model_kwargs == None:
model_kwargs = {}
t, x0, x1 = self.sample(x1)
t, xt, ut = self.path_sampler.plan(t, x0, x1)
if "cond" in model_kwargs:
conds = model_kwargs.pop("cond")
xt = [th.cat([x, cond], dim=0) if cond is not None else x for x, cond in zip(xt, conds)]
model_output = model(xt, t, **model_kwargs)
B = len(x0)
terms = {}
# terms['pred'] = model_output
if self.model_type == ModelType.VELOCITY:
if isinstance(x1, (list, tuple)):
assert len(model_output) == len(ut) == len(x1)
for i in range(B):
assert (
model_output[i].shape == ut[i].shape == x1[i].shape
), f"{model_output[i].shape} {ut[i].shape} {x1[i].shape}"
terms["task_loss"] = th.stack(
[((ut[i] - model_output[i]) ** 2).mean() for i in range(B)],
dim=0,
)
else:
terms["task_loss"] = mean_flat(((model_output - ut) ** 2))
else:
raise NotImplementedError
terms["loss"] = terms["task_loss"]
terms["task_loss"] = terms["task_loss"].clone().detach()
terms["t"] = t
return terms
def get_drift(self):
"""member function for obtaining the drift of the probability flow ODE"""
def score_ode(x, t, model, **model_kwargs):
drift_mean, drift_var = self.path_sampler.compute_drift(x, t)
model_output = model(x, t, **model_kwargs)
return -drift_mean + drift_var * model_output # by change of variable
def noise_ode(x, t, model, **model_kwargs):
drift_mean, drift_var = self.path_sampler.compute_drift(x, t)
sigma_t, _ = self.path_sampler.compute_sigma_t(path.expand_t_like_x(t, x))
model_output = model(x, t, **model_kwargs)
score = model_output / -sigma_t
return -drift_mean + drift_var * score
def velocity_ode(x, t, model, **model_kwargs):
model_output = model(x, t, **model_kwargs)
return model_output
if self.model_type == ModelType.NOISE:
drift_fn = noise_ode
elif self.model_type == ModelType.SCORE:
drift_fn = score_ode
else:
drift_fn = velocity_ode
def body_fn(x, t, model, **model_kwargs):
model_output = drift_fn(x, t, model, **model_kwargs)
assert model_output.shape == x.shape, "Output shape from ODE solver must match input shape"
return model_output
return body_fn
def get_score(
self,
):
"""member function for obtaining score of
x_t = alpha_t * x + sigma_t * eps"""
if self.model_type == ModelType.NOISE:
score_fn = (
lambda x, t, model, **kwargs: model(x, t, **kwargs)
/ -self.path_sampler.compute_sigma_t(path.expand_t_like_x(t, x))[0]
)
elif self.model_type == ModelType.SCORE:
score_fn = lambda x, t, model, **kwagrs: model(x, t, **kwagrs)
elif self.model_type == ModelType.VELOCITY:
score_fn = lambda x, t, model, **kwargs: self.path_sampler.get_score_from_velocity(
model(x, t, **kwargs), x, t
)
else:
raise NotImplementedError()
return score_fn
class Sampler:
"""Sampler class for the transport model"""
def __init__(
self,
transport,
):
"""Constructor for a general sampler; supporting different sampling methods
Args:
- transport: an tranport object specify model prediction & interpolant type
"""
self.transport = transport
self.drift = self.transport.get_drift()
self.score = self.transport.get_score()
def __get_sde_diffusion_and_drift(
self,
*,
diffusion_form="SBDM",
diffusion_norm=1.0,
):
def diffusion_fn(x, t):
diffusion = self.transport.path_sampler.compute_diffusion(x, t, form=diffusion_form, norm=diffusion_norm)
return diffusion
sde_drift = lambda x, t, model, **kwargs: self.drift(x, t, model, **kwargs) + diffusion_fn(x, t) * self.score(
x, t, model, **kwargs
)
sde_diffusion = diffusion_fn
return sde_drift, sde_diffusion
def __get_last_step(
self,
sde_drift,
*,
last_step,
last_step_size,
):
"""Get the last step function of the SDE solver"""
if last_step is None:
last_step_fn = lambda x, t, model, **model_kwargs: x
elif last_step == "Mean":
last_step_fn = (
lambda x, t, model, **model_kwargs: x + sde_drift(x, t, model, **model_kwargs) * last_step_size
)
elif last_step == "Tweedie":
alpha = self.transport.path_sampler.compute_alpha_t # simple aliasing; the original name was too long
sigma = self.transport.path_sampler.compute_sigma_t
last_step_fn = lambda x, t, model, **model_kwargs: x / alpha(t)[0][0] + (sigma(t)[0][0] ** 2) / alpha(t)[0][
0
] * self.score(x, t, model, **model_kwargs)
elif last_step == "Euler":
last_step_fn = (
lambda x, t, model, **model_kwargs: x + self.drift(x, t, model, **model_kwargs) * last_step_size
)
else:
raise NotImplementedError()
return last_step_fn
def sample_sde(
self,
*,
sampling_method="Euler",
diffusion_form="SBDM",
diffusion_norm=1.0,
last_step="Mean",
last_step_size=0.04,
num_steps=250,
):
"""returns a sampling function with given SDE settings
Args:
- sampling_method: type of sampler used in solving the SDE; default to be Euler-Maruyama
- diffusion_form: function form of diffusion coefficient; default to be matching SBDM
- diffusion_norm: function magnitude of diffusion coefficient; default to 1
- last_step: type of the last step; default to identity
- last_step_size: size of the last step; default to match the stride of 250 steps over [0,1]
- num_steps: total integration step of SDE
"""
if last_step is None:
last_step_size = 0.0
sde_drift, sde_diffusion = self.__get_sde_diffusion_and_drift(
diffusion_form=diffusion_form,
diffusion_norm=diffusion_norm,
)
t0, t1 = self.transport.check_interval(
self.transport.train_eps,
self.transport.sample_eps,
diffusion_form=diffusion_form,
sde=True,
eval=True,
reverse=False,
last_step_size=last_step_size,
)
_sde = sde(
sde_drift,
sde_diffusion,
t0=t0,
t1=t1,
num_steps=num_steps,
sampler_type=sampling_method,
)
last_step_fn = self.__get_last_step(sde_drift, last_step=last_step, last_step_size=last_step_size)
def _sample(init, model, **model_kwargs):
xs = _sde.sample(init, model, **model_kwargs)
ts = th.ones(init.size(0), device=init.device) * t1
x = last_step_fn(xs[-1], ts, model, **model_kwargs)
xs.append(x)
assert len(xs) == num_steps, "Samples does not match the number of steps"
return xs
return _sample
def sample_dpm(
self,
model,
model_kwargs=None,
):
noise_schedule = NoiseScheduleFlow(schedule="discrete_flow")
def noise_pred_fn(x, t_continuous):
output = model(x, 1 - t_continuous, **model_kwargs)
_, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
try:
noise = x - (1 - expand_dims(sigma_t, x.dim()).to(x)) * output
except:
noise = x - (1 - expand_dims(sigma_t, x.dim()).to(x)) * output[0]
return noise
return DPM_Solver(noise_pred_fn, noise_schedule, algorithm_type="dpmsolver++").sample
def sample_ode(
self,
*,
sampling_method="dopri5",
num_steps=50,
atol=1e-6,
rtol=1e-3,
reverse=False,
do_shift=False,
time_shifting_factor=None,
):
"""returns a sampling function with given ODE settings
Args:
- sampling_method: type of sampler used in solving the ODE; default to be Dopri5
- num_steps:
- fixed solver (Euler, Heun): the actual number of integration steps performed
- adaptive solver (Dopri5): the number of datapoints saved during integration; produced by interpolation
- atol: absolute error tolerance for the solver
- rtol: relative error tolerance for the solver
"""
# for flux
drift = lambda x, t, model, **kwargs: self.drift(x, t, model, **kwargs)
t0, t1 = self.transport.check_interval(
self.transport.train_eps,
self.transport.sample_eps,
sde=False,
eval=True,
reverse=reverse,
last_step_size=0.0,
)
_ode = ode(
drift=drift,
t0=t0,
t1=t1,
sampler_type=sampling_method,
num_steps=num_steps,
atol=atol,
rtol=rtol,
do_shift=do_shift,
time_shifting_factor=time_shifting_factor,
)
return _ode.sample
def sample_ode_likelihood(
self,
*,
sampling_method="dopri5",
num_steps=50,
atol=1e-6,
rtol=1e-3,
):
"""returns a sampling function for calculating likelihood with given ODE settings
Args:
- sampling_method: type of sampler used in solving the ODE; default to be Dopri5
- num_steps:
- fixed solver (Euler, Heun): the actual number of integration steps performed
- adaptive solver (Dopri5): the number of datapoints saved during integration; produced by interpolation
- atol: absolute error tolerance for the solver
- rtol: relative error tolerance for the solver
"""
def _likelihood_drift(x, t, model, **model_kwargs):
x, _ = x
eps = th.randint(2, x.size(), dtype=th.float, device=x.device) * 2 - 1
t = th.ones_like(t) * (1 - t)
with th.enable_grad():
x.requires_grad = True
grad = th.autograd.grad(th.sum(self.drift(x, t, model, **model_kwargs) * eps), x)[0]
logp_grad = th.sum(grad * eps, dim=tuple(range(1, len(x.size()))))
drift = self.drift(x, t, model, **model_kwargs)
return (-drift, logp_grad)
t0, t1 = self.transport.check_interval(
self.transport.train_eps,
self.transport.sample_eps,
sde=False,
eval=True,
reverse=False,
last_step_size=0.0,
)
_ode = ode(
drift=_likelihood_drift,
t0=t0,
t1=t1,
sampler_type=sampling_method,
num_steps=num_steps,
atol=atol,
rtol=rtol,
)
def _sample_fn(x, model, **model_kwargs):
init_logp = th.zeros(x.size(0)).to(x)
input = (x, init_logp)
drift, delta_logp = _ode.sample(input, model, **model_kwargs)
drift, delta_logp = drift[-1], delta_logp[-1]
prior_logp = self.transport.prior_logp(drift)
logp = prior_logp - delta_logp
return logp, drift
return _sample_fn