forked from microsoft/LightGBM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_engine.py
293 lines (274 loc) · 13.1 KB
/
test_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# coding: utf-8
# pylint: skip-file
import copy
import math
import os
import unittest
import lightgbm as lgb
import numpy as np
from sklearn.datasets import (load_boston, load_breast_cancer, load_digits,
load_iris, load_svmlight_file)
from sklearn.metrics import log_loss, mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split, TimeSeriesSplit
try:
import pandas as pd
IS_PANDAS_INSTALLED = True
except ImportError:
IS_PANDAS_INSTALLED = False
try:
import cPickle as pickle
except ImportError:
import pickle
def multi_logloss(y_true, y_pred):
return np.mean([-math.log(y_pred[i][y]) for i, y in enumerate(y_true)])
class TestEngine(unittest.TestCase):
def test_binary(self):
X, y = load_breast_cancer(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
params = {
'objective': 'binary',
'metric': 'binary_logloss',
'verbose': -1
}
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
evals_result = {}
gbm = lgb.train(params, lgb_train,
num_boost_round=50,
valid_sets=lgb_eval,
verbose_eval=False,
evals_result=evals_result)
ret = log_loss(y_test, gbm.predict(X_test))
self.assertLess(ret, 0.15)
self.assertAlmostEqual(evals_result['valid_0']['binary_logloss'][-1], ret, places=5)
def test_regreesion(self):
X, y = load_boston(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
params = {
'metric': 'l2',
'verbose': -1
}
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
evals_result = {}
gbm = lgb.train(params, lgb_train,
num_boost_round=50,
valid_sets=lgb_eval,
verbose_eval=False,
evals_result=evals_result)
ret = mean_squared_error(y_test, gbm.predict(X_test))
self.assertLess(ret, 16)
self.assertAlmostEqual(evals_result['valid_0']['l2'][-1], ret, places=5)
def test_multiclass(self):
X, y = load_digits(10, True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
params = {
'objective': 'multiclass',
'metric': 'multi_logloss',
'num_class': 10,
'verbose': -1
}
lgb_train = lgb.Dataset(X_train, y_train, params=params)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train, params=params)
evals_result = {}
gbm = lgb.train(params, lgb_train,
num_boost_round=50,
valid_sets=lgb_eval,
verbose_eval=False,
evals_result=evals_result)
ret = multi_logloss(y_test, gbm.predict(X_test))
self.assertLess(ret, 0.2)
self.assertAlmostEqual(evals_result['valid_0']['multi_logloss'][-1], ret, places=5)
def test_early_stopping(self):
X, y = load_breast_cancer(True)
params = {
'objective': 'binary',
'metric': 'binary_logloss',
'verbose': -1
}
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)
valid_set_name = 'valid_set'
# no early stopping
gbm = lgb.train(params, lgb_train,
num_boost_round=10,
valid_sets=lgb_eval,
valid_names=valid_set_name,
verbose_eval=False,
early_stopping_rounds=5)
self.assertEqual(gbm.best_iteration, -1)
self.assertIn(valid_set_name, gbm.best_score)
self.assertIn('binary_logloss', gbm.best_score[valid_set_name])
# early stopping occurs
gbm = lgb.train(params, lgb_train,
valid_sets=lgb_eval,
valid_names=valid_set_name,
verbose_eval=False,
early_stopping_rounds=5)
self.assertLessEqual(gbm.best_iteration, 100)
self.assertIn(valid_set_name, gbm.best_score)
self.assertIn('binary_logloss', gbm.best_score[valid_set_name])
def test_continue_train_and_dump_model(self):
X, y = load_boston(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
params = {
'objective': 'regression',
'metric': 'l1',
'verbose': -1
}
lgb_train = lgb.Dataset(X_train, y_train, free_raw_data=False)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train, free_raw_data=False)
init_gbm = lgb.train(params, lgb_train, num_boost_round=20)
model_name = 'model.txt'
init_gbm.save_model(model_name)
evals_result = {}
gbm = lgb.train(params, lgb_train,
num_boost_round=30,
valid_sets=lgb_eval,
verbose_eval=False,
# test custom eval metrics
feval=(lambda p, d: ('mae', mean_absolute_error(p, d.get_label()), False)),
evals_result=evals_result,
init_model='model.txt')
ret = mean_absolute_error(y_test, gbm.predict(X_test))
self.assertLess(ret, 3.5)
self.assertAlmostEqual(evals_result['valid_0']['l1'][-1], ret, places=5)
for l1, mae in zip(evals_result['valid_0']['l1'], evals_result['valid_0']['mae']):
self.assertAlmostEqual(l1, mae, places=5)
# test dump model
self.assertIn('tree_info', gbm.dump_model())
self.assertIsInstance(gbm.feature_importance(), np.ndarray)
os.remove(model_name)
def test_continue_train_multiclass(self):
X, y = load_iris(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
params = {
'objective': 'multiclass',
'metric': 'multi_logloss',
'num_class': 3,
'verbose': -1
}
lgb_train = lgb.Dataset(X_train, y_train, params=params, free_raw_data=False)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train, params=params, free_raw_data=False)
init_gbm = lgb.train(params, lgb_train, num_boost_round=20)
evals_result = {}
gbm = lgb.train(params, lgb_train,
num_boost_round=30,
valid_sets=lgb_eval,
verbose_eval=False,
evals_result=evals_result,
init_model=init_gbm)
ret = multi_logloss(y_test, gbm.predict(X_test))
self.assertLess(ret, 1.5)
self.assertAlmostEqual(evals_result['valid_0']['multi_logloss'][-1], ret, places=5)
def test_cv(self):
X, y = load_boston(True)
X_train, _, y_train, _ = train_test_split(X, y, test_size=0.1, random_state=42)
params = {'verbose': -1}
lgb_train = lgb.Dataset(X_train, y_train)
# shuffle = False, override metric in params
params_with_metric = {'metric': 'l2', 'verbose': -1}
lgb.cv(params_with_metric, lgb_train, num_boost_round=10, nfold=3, shuffle=False,
metrics='l1', verbose_eval=False)
# shuffle = True, callbacks
lgb.cv(params, lgb_train, num_boost_round=10, nfold=3, shuffle=True,
metrics='l1', verbose_eval=False,
callbacks=[lgb.reset_parameter(learning_rate=lambda i: 0.1 - 0.001 * i)])
# self defined data_splitter
tss = TimeSeriesSplit(3)
lgb.cv(params, lgb_train, num_boost_round=10, data_splitter=tss, nfold=5, # test if wrong nfold is ignored
metrics='l2', verbose_eval=False)
# lambdarank
X_train, y_train = load_svmlight_file('../../examples/lambdarank/rank.train')
q_train = np.loadtxt('../../examples/lambdarank/rank.train.query')
params_lambdarank = {'objective': 'lambdarank', 'verbose': -1}
lgb_train = lgb.Dataset(X_train, y_train, group=q_train)
lgb.cv(params_lambdarank, lgb_train, num_boost_round=10, nfold=3, metrics='l2', verbose_eval=False)
def test_feature_name(self):
X, y = load_boston(True)
X_train, _, y_train, _ = train_test_split(X, y, test_size=0.1, random_state=42)
params = {'verbose': -1}
lgb_train = lgb.Dataset(X_train, y_train)
feature_names = ['f_' + str(i) for i in range(13)]
gbm = lgb.train(params, lgb_train, num_boost_round=5, feature_name=feature_names)
self.assertListEqual(feature_names, gbm.feature_name())
# test feature_names with whitespaces
feature_names_with_space = ['f ' + str(i) for i in range(13)]
gbm = lgb.train(params, lgb_train, num_boost_round=5, feature_name=feature_names_with_space)
self.assertListEqual(feature_names, gbm.feature_name())
def test_save_load_copy_pickle(self):
def test_template(init_model=None, return_model=False):
X, y = load_boston(True)
params = {
'objective': 'regression',
'metric': 'l2',
'verbose': -1
}
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
lgb_train = lgb.Dataset(X_train, y_train)
gbm_template = lgb.train(params, lgb_train, num_boost_round=10, init_model=init_model)
return gbm_template if return_model else mean_squared_error(y_test, gbm_template.predict(X_test))
gbm = test_template(return_model=True)
ret_origin = test_template(init_model=gbm)
other_ret = []
gbm.save_model('lgb.model')
other_ret.append(test_template(init_model='lgb.model'))
gbm_load = lgb.Booster(model_file='lgb.model')
other_ret.append(test_template(init_model=gbm_load))
other_ret.append(test_template(init_model=copy.copy(gbm)))
other_ret.append(test_template(init_model=copy.deepcopy(gbm)))
with open('lgb.pkl', 'wb') as f:
pickle.dump(gbm, f)
with open('lgb.pkl', 'rb') as f:
gbm_pickle = pickle.load(f)
other_ret.append(test_template(init_model=gbm_pickle))
gbm_pickles = pickle.loads(pickle.dumps(gbm))
other_ret.append(test_template(init_model=gbm_pickles))
for ret in other_ret:
self.assertAlmostEqual(ret_origin, ret, places=5)
@unittest.skipIf(not IS_PANDAS_INSTALLED, 'pandas not installed')
def test_pandas_categorical(self):
X = pd.DataFrame({"A": np.random.permutation(['a', 'b', 'c', 'd'] * 75), # str
"B": np.random.permutation([1, 2, 3] * 100), # int
"C": np.random.permutation([0.1, 0.2, -0.1, -0.1, 0.2] * 60), # float
"D": np.random.permutation([True, False] * 150)}) # bool
y = np.random.permutation([0, 1] * 150)
X_test = pd.DataFrame({"A": np.random.permutation(['a', 'b', 'e'] * 20),
"B": np.random.permutation([1, 3] * 30),
"C": np.random.permutation([0.1, -0.1, 0.2, 0.2] * 15),
"D": np.random.permutation([True, False] * 30)})
for col in ["A", "B", "C", "D"]:
X[col] = X[col].astype('category')
X_test[col] = X_test[col].astype('category')
params = {
'objective': 'binary',
'metric': 'binary_logloss',
'verbose': -1
}
lgb_train = lgb.Dataset(X, y)
gbm0 = lgb.train(params, lgb_train, num_boost_round=10, verbose_eval=False)
pred0 = list(gbm0.predict(X_test))
lgb_train = lgb.Dataset(X, y)
gbm1 = lgb.train(params, lgb_train, num_boost_round=10, verbose_eval=False,
categorical_feature=[0])
pred1 = list(gbm1.predict(X_test))
lgb_train = lgb.Dataset(X, y)
gbm2 = lgb.train(params, lgb_train, num_boost_round=10, verbose_eval=False,
categorical_feature=['A'])
pred2 = list(gbm2.predict(X_test))
lgb_train = lgb.Dataset(X, y)
gbm3 = lgb.train(params, lgb_train, num_boost_round=10, verbose_eval=False,
categorical_feature=['A', 'B', 'C', 'D'])
pred3 = list(gbm3.predict(X_test))
lgb_train = lgb.Dataset(X, y)
gbm3.save_model('categorical.model')
gbm4 = lgb.Booster(model_file='categorical.model')
pred4 = list(gbm4.predict(X_test))
np.testing.assert_almost_equal(pred0, pred1)
np.testing.assert_almost_equal(pred0, pred2)
np.testing.assert_almost_equal(pred0, pred3)
np.testing.assert_almost_equal(pred0, pred4)
print("----------------------------------------------------------------------")
print("running test_engine.py")
unittest.main()