-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_and_extract.py
106 lines (81 loc) · 3.12 KB
/
eval_and_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from collections import defaultdict
import os,yaml
import torch
import numpy as np
from config import load_config
from dataset import build_dataloader
from model import build_model
from evaluator import build_evaluator
from utils import *
import time
from apex import amp
from termcolor import colored
train_io_timer = Timer()
train_model_timer = Timer()
eval_io_timer = Timer()
eval_model_timer = Timer()
@torch.no_grad()
def eval_and_extract(config, epoch, loader, model, logger, evaluator):
model.eval()
all_pred = defaultdict(list)
all_gt = defaultdict(list)
eval_io_timer.tic()
for i, batch in enumerate(loader):
eval_io_timer.toc()
eval_model_timer.tic()
subbatch = {
k : v.cuda(non_blocking=True)
for k,v in batch.items() if 'class' in k or 'frame' in k
}
pred = model(subbatch, is_training=False)
for k in pred.keys():
all_pred[k].append(pred[k].data.cpu().numpy())
all_gt['action'].append(batch['next_action_class'])
all_gt['verb'].append(batch['next_verb_class'])
all_gt['noun'].append(batch['next_noun_class'])
all_gt['id'].append(batch['id'])
if config.eval.report_iter and ((i + 1) % config.eval.report_iter == 0 or i + 1 == len(loader)):
logger.info(
"Evaluation. %03d epoch. %d/%d iter. IO time %.4f. model time %.4f." % (
epoch, i + 1, len(loader), train_io_timer.average_time, train_model_timer.average_time
))
eval_io_timer.clear()
eval_model_timer.clear()
eval_model_timer.toc()
eval_io_timer.tic()
for k in all_pred.keys():
all_pred[k] = np.concatenate(all_pred[k],0)
for k in all_gt:
all_gt[k] = np.concatenate(all_gt[k],0)
result = evaluator(all_pred,all_gt)
return result,all_pred,all_gt
def main(config):
logger, _ = build_logger(path=None, console=True, tensorboard_log=False)
logger.info(config)
eval_loader = build_dataloader(logger,config.eval.data, shuffle=False, ddp=False)
evaluator = build_evaluator(eval_loader.dataset)
model = build_model(config.model,eval_loader.dataset).cuda()
logger.info(model)
if config.AMP_OPT_LEVEL != "O0":
model = amp.initialize(model, opt_level=config.AMP_OPT_LEVEL)
config.resume.type = 'test'
epoch, bst = load_resume(config.resume,model)
logger.info('Start!')
result,all_pred,all_gt = eval_and_extract(config, epoch, eval_loader, model, logger, evaluator)
eval_report = "Eval %03d. " % epoch
for metric, val in result.items():
eval_report += '%s: %.4f. ' % (metric, val)
logger.info(colored(eval_report,'yellow'))
tgt_fn = config.resume.path + '.%s.pkl' % config.eval.data.split
assert not os.path.exists(tgt_fn),tgt_fn
logger.info('Save score into ==> %s' % tgt_fn)
with open(tgt_fn, 'wb') as f:
pkl.dump({
'pred' : dict(all_pred),
'gt' : dict(all_gt)
},f)
if __name__ == '__main__':
args = parse_args()
config = load_config(args)
initialize(config)
main(config)