forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·126 lines (104 loc) · 5.03 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.user_emb_size = envs.get_global_env(
"hyper_parameters.user_emb_size", 64)
self.user_count = envs.get_global_env("hyper_parameters.user_count",
100000)
self.transformed_size = envs.get_global_env(
"hyper_parameter.transformed_size", 96)
def local_attention_unit(self, user_seeds, target_user):
wl = fluid.layers.create_parameter(
shape=[self.user_emb_size, self.user_emb_size], dtype="float32")
out = fluid.layers.matmul(user_seeds,
wl) # batch_size * max_len * emb_size
out = fluid.layers.matmul(
out, target_user, transpose_y=True) # batch_size * max_len * 1
out = fluid.layers.tanh(out)
out = fluid.layers.softmax(out, axis=-2)
out = user_seeds * out
out = fluid.layers.reduce_sum(out, dim=1) # batch_size * emb_size
return out
def global_attention_unit(self, user_seeds):
wg = fluid.layers.create_parameter(
shape=[self.user_emb_size, self.user_emb_size], dtype="float32")
out = fluid.layers.matmul(user_seeds, wg)
out = fluid.layers.tanh(out)
out = fluid.layers.matmul(out, user_seeds, transpose_y=True)
out = fluid.layers.softmax(out)
out = fluid.layers.matmul(out, user_seeds)
out = fluid.layers.reduce_sum(out, dim=1)
return out
def net(self, inputs, is_infer=False):
init_value_ = 0.1
user_seeds = self._sparse_data_var[1]
target_user = self._sparse_data_var[2]
self.label = self._sparse_data_var[0]
user_emb_attr = fluid.ParamAttr(name="user_emb")
user_seeds_emb = fluid.embedding(
input=user_seeds,
size=[self.user_count, self.user_emb_size],
param_attr=user_emb_attr,
is_sparse=True)
target_user_emb = fluid.embedding(
input=target_user,
size=[self.user_count, self.user_emb_size],
param_attr=user_emb_attr,
is_sparse=True) # batch_size * 1 * emb_size
user_seeds_emb = fluid.layers.reduce_sum(
user_seeds_emb, dim=1) # batch_size(with lod) * emb_size
pad_value = fluid.layers.assign(input=np.array(
[0.0], dtype=np.float32))
user_seeds_emb, _ = fluid.layers.sequence_pad(
user_seeds_emb, pad_value
) # batch_size(without lod) * max_sequence_length(in batch) * emb_size
target_transform_matrix = fluid.layers.create_parameter(
shape=[self.user_emb_size, self.transformed_size], dtype="float32")
seeds_transform_matrix = fluid.layers.create_parameter(
shape=[self.user_emb_size, self.transformed_size], dtype="float32")
user_seeds_emb_transformed = fluid.layers.matmul(
user_seeds_emb, seeds_transform_matrix)
target_user_emb_transormed = fluid.layers.matmul(
target_user_emb, target_transform_matrix)
seeds_tower = self.local_attention_unit(
user_seeds_emb_transformed,
target_user_emb_transormed) + self.global_attention_unit(
user_seeds_emb_transformed)
target_tower = fluid.layers.reduce_sum(
target_user_emb_transormed, dim=1)
score = fluid.layers.cos_sim(seeds_tower, target_tower)
y_dnn = fluid.layers.cast(self.label, dtype="float32")
self.predict = fluid.layers.sigmoid(score)
cost = fluid.layers.log_loss(
input=score, label=fluid.layers.cast(self.label, "float32"))
avg_cost = fluid.layers.reduce_sum(cost)
self._cost = avg_cost
predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
label_int = fluid.layers.cast(self.label, 'int64')
auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
label=label_int,
slide_steps=0)
self._metrics["AUC"] = auc_var
self._metrics["BATCH_AUC"] = batch_auc_var
if is_infer:
self._infer_results["AUC"] = auc_var