forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·223 lines (188 loc) · 9.38 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.sparse_feature_number = envs.get_global_env(
"hyper_parameters.sparse_feature_number", None)
self.sparse_feature_dim = envs.get_global_env(
"hyper_parameters.sparse_feature_dim", None)
self.num_field = envs.get_global_env("hyper_parameters.num_field",
None)
self.d_model = envs.get_global_env("hyper_parameters.d_model", None)
self.d_key = envs.get_global_env("hyper_parameters.d_key", None)
self.d_value = envs.get_global_env("hyper_parameters.d_value", None)
self.n_head = envs.get_global_env("hyper_parameters.n_head", None)
self.dropout_rate = envs.get_global_env(
"hyper_parameters.dropout_rate", 0)
self.n_interacting_layers = envs.get_global_env(
"hyper_parameters.n_interacting_layers", 1)
def multi_head_attention(self, queries, keys, values, d_key, d_value,
d_model, n_head, dropout_rate):
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3
):
raise ValueError(
"Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = fluid.layers.fc(input=queries,
size=d_key * n_head,
bias_attr=False,
num_flatten_dims=2)
k = fluid.layers.fc(input=keys,
size=d_key * n_head,
bias_attr=False,
num_flatten_dims=2)
v = fluid.layers.fc(input=values,
size=d_value * n_head,
bias_attr=False,
num_flatten_dims=2)
return q, k, v
def __split_heads_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Reshape input tensors at the last dimension to split multi-heads
and then transpose. Specifically, transform the input tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] to the output tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped_q = fluid.layers.reshape(
x=queries, shape=[0, 0, n_head, d_key], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
q = fluid.layers.transpose(x=reshaped_q, perm=[0, 2, 1, 3])
# For encoder-decoder attention in inference, insert the ops and vars
# into global block to use as cache among beam search.
reshaped_k = fluid.layers.reshape(
x=keys, shape=[0, 0, n_head, d_key], inplace=True)
k = fluid.layers.transpose(x=reshaped_k, perm=[0, 2, 1, 3])
reshaped_v = fluid.layers.reshape(
x=values, shape=[0, 0, n_head, d_value], inplace=True)
v = fluid.layers.transpose(x=reshaped_v, perm=[0, 2, 1, 3])
return q, k, v
def scaled_dot_product_attention(q, k, v, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
product = fluid.layers.matmul(
x=q, y=k, transpose_y=True, alpha=d_key**-0.5)
weights = fluid.layers.softmax(product)
if dropout_rate:
weights = fluid.layers.dropout(
weights,
dropout_prob=dropout_rate,
seed=None,
is_test=False)
out = fluid.layers.matmul(weights, v)
return out
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = fluid.layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return fluid.layers.reshape(
x=trans_x,
shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
inplace=True)
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
q, k, v = __split_heads_qkv(q, k, v, n_head, d_key, d_value)
ctx_multiheads = scaled_dot_product_attention(q, k, v, self.d_model,
dropout_rate)
out = __combine_heads(ctx_multiheads)
return out
def interacting_layer(self, x):
attention_out = self.multi_head_attention(
x, None, None, self.d_key, self.d_value, self.d_model, self.n_head,
self.dropout_rate)
W_0_x = fluid.layers.fc(input=x,
size=self.d_model,
bias_attr=False,
num_flatten_dims=2)
res_out = fluid.layers.relu(attention_out + W_0_x)
return res_out
def net(self, inputs, is_infer=False):
init_value_ = 0.1
is_distributed = True if envs.get_trainer() == "CtrTrainer" else False
# ------------------------- network input --------------------------
raw_feat_idx = self._sparse_data_var[1]
raw_feat_value = self._dense_data_var[0]
self.label = self._sparse_data_var[0]
feat_idx = raw_feat_idx
feat_value = fluid.layers.reshape(
raw_feat_value, [-1, self.num_field, 1]) # None * num_field * 1
# ------------------------- Embedding --------------------------
feat_embeddings_re = fluid.embedding(
input=feat_idx,
is_sparse=True,
is_distributed=is_distributed,
dtype='float32',
size=[self.sparse_feature_number + 1, self.sparse_feature_dim],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0,
scale=init_value_ /
math.sqrt(float(self.sparse_feature_dim)))))
feat_embeddings = fluid.layers.reshape(
feat_embeddings_re,
shape=[-1, self.num_field, self.sparse_feature_dim
]) # None * num_field * embedding_size
# None * num_field * embedding_size
feat_embeddings = feat_embeddings * feat_value
inter_input = feat_embeddings
# ------------------------- interacting layer --------------------------
for _ in range(self.n_interacting_layers):
interacting_layer_out = self.interacting_layer(inter_input)
inter_input = interacting_layer_out
# ------------------------- DNN --------------------------
dnn_input = fluid.layers.flatten(interacting_layer_out, axis=1)
y_dnn = fluid.layers.fc(
input=dnn_input,
size=1,
act=None,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_)))
self.predict = fluid.layers.sigmoid(y_dnn)
cost = fluid.layers.log_loss(
input=self.predict, label=fluid.layers.cast(self.label, "float32"))
avg_cost = fluid.layers.reduce_sum(cost)
self._cost = avg_cost
predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
label_int = fluid.layers.cast(self.label, 'int64')
auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
label=label_int,
slide_steps=0)
self._metrics["AUC"] = auc_var
self._metrics["BATCH_AUC"] = batch_auc_var
if is_infer:
self._infer_results["AUC"] = auc_var