An Unsupervised Ensemble Learning Method for Quality Control of Single Cell RNA-seq Sequencing Data
- Python 3
- Scikt-learn
- Numpy
Download all files and run following command to display help message
$ python runEnsembleKQC.py --help
usage: runEnsembleKQC.py [-h] [--input_path INPUT_PATH] [--lower_bound LOWER_BOUND]
[--upper_bound UPPER_BOUND] [--labeld LABELD]
[--output_path OUTPUT_PATH]
optional arguments:
-h, --help show this help message and exit
--input_path INPUT_PATH
path of input data
--lower_bound LOWER_BOUND
lower bound of estimated low-quality cell number
--upper_bound UPPER_BOUND
upper bound of estimated low-quality cell number
--labeld LABELD whether the data has quality labels. If true,
evaluation information will be printed.
--output_path OUTPUT_PATH
path of output data
$ python runEnsembleKQC.py --input_path ./example_data/Kolodziejczyk.csv --lower_bound 96 --upper_bound 192 --labeled False --output_path ./result.csv
$ python runEnsembleKQC.py --input_path ./example_data/labeled_Kolodziejczyk.csv --lower_bound 96 --upper_bound 192 --labeled True --output_path ./result.csv