|
| 1 | +用 LSTM 做时间序列预测的一个小例子 |
| 2 | + |
| 3 | +问题:航班乘客预测 |
| 4 | +数据:1949 到 1960 一共 12 年,每年 12 个月的数据,一共 144 个数据,单位是 1000 |
| 5 | +[下载地址](https://datamarket.com/data/set/22u3/international-airline-passengers-monthly-totals-in-thousands-jan-49-dec-60#!ds=22u3&display=line) |
| 6 | +目标:预测国际航班未来 1 个月的乘客数 |
| 7 | + |
| 8 | +```python |
| 9 | +import numpy |
| 10 | +import matplotlib.pyplot as plt |
| 11 | +from pandas import read_csv |
| 12 | +import math |
| 13 | +from keras.models import Sequential |
| 14 | +from keras.layers import Dense |
| 15 | +from keras.layers import LSTM |
| 16 | +from sklearn.preprocessing import MinMaxScaler |
| 17 | +from sklearn.metrics import mean_squared_error |
| 18 | +%matplotlib inline |
| 19 | +``` |
| 20 | + |
| 21 | +**导入数据:** |
| 22 | + |
| 23 | +```python |
| 24 | +# load the dataset |
| 25 | +dataframe = read_csv('international-airline-passengers.csv', usecols=[1], engine='python', skipfooter=3) |
| 26 | +dataset = dataframe.values |
| 27 | +# 将整型变为float |
| 28 | +dataset = dataset.astype('float32') |
| 29 | + |
| 30 | +plt.plot(dataset) |
| 31 | +plt.show() |
| 32 | +``` |
| 33 | + |
| 34 | +从这 12 年的数据可以看到上升的趋势,每一年内的 12 个月里又有周期性季节性的规律 |
| 35 | + |
| 36 | + |
| 37 | + |
| 38 | +**需要把数据做一下转化:** |
| 39 | + |
| 40 | +将一列变成两列,第一列是 t 月的乘客数,第二列是 t+1 列的乘客数。 |
| 41 | +look_back 就是预测下一步所需要的 time steps: |
| 42 | + |
| 43 | +timesteps 就是 LSTM 认为每个输入数据与前多少个陆续输入的数据有联系。例如具有这样用段序列数据 “…ABCDBCEDF…”,当 timesteps 为 3 时,在模型预测中如果输入数据为“D”,那么之前接收的数据如果为“B”和“C”则此时的预测输出为 B 的概率更大,之前接收的数据如果为“C”和“E”,则此时的预测输出为 F 的概率更大。 |
| 44 | + |
| 45 | +```python |
| 46 | +# X is the number of passengers at a given time (t) and Y is the number of passengers at the next time (t + 1). |
| 47 | + |
| 48 | +# convert an array of values into a dataset matrix |
| 49 | +def create_dataset(dataset, look_back=1): |
| 50 | + dataX, dataY = [], [] |
| 51 | + for i in range(len(dataset)-look_back-1): |
| 52 | + a = dataset[i:(i+look_back), 0] |
| 53 | + dataX.append(a) |
| 54 | + dataY.append(dataset[i + look_back, 0]) |
| 55 | + return numpy.array(dataX), numpy.array(dataY) |
| 56 | + |
| 57 | +# fix random seed for reproducibility |
| 58 | +numpy.random.seed(7) |
| 59 | +``` |
| 60 | + |
| 61 | +当激活函数为 sigmoid 或者 tanh 时,要把数据正则话,此时 LSTM 比较敏感 |
| 62 | +**设定 67% 是训练数据,余下的是测试数据** |
| 63 | + |
| 64 | +```python |
| 65 | +# normalize the dataset |
| 66 | +scaler = MinMaxScaler(feature_range=(0, 1)) |
| 67 | +dataset = scaler.fit_transform(dataset) |
| 68 | + |
| 69 | + |
| 70 | +# split into train and test sets |
| 71 | +train_size = int(len(dataset) * 0.67) |
| 72 | +test_size = len(dataset) - train_size |
| 73 | +train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] |
| 74 | +``` |
| 75 | + |
| 76 | +X=t and Y=t+1 时的数据,并且此时的维度为 [samples, features] |
| 77 | + |
| 78 | +```python |
| 79 | +# use this function to prepare the train and test datasets for modeling |
| 80 | +look_back = 1 |
| 81 | +trainX, trainY = create_dataset(train, look_back) |
| 82 | +testX, testY = create_dataset(test, look_back) |
| 83 | +``` |
| 84 | + |
| 85 | +投入到 LSTM 的 X 需要有这样的结构: [samples, time steps, features],所以做一下变换 |
| 86 | + |
| 87 | +```python |
| 88 | +# reshape input to be [samples, time steps, features] |
| 89 | +trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) |
| 90 | +testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1])) |
| 91 | +``` |
| 92 | + |
| 93 | +**建立 LSTM 模型:** |
| 94 | +输入层有 1 个input,隐藏层有 4 个神经元,输出层就是预测一个值,激活函数用 sigmoid,迭代 100 次,batch size 为 1 |
| 95 | + |
| 96 | +```python |
| 97 | +# create and fit the LSTM network |
| 98 | +model = Sequential() |
| 99 | +model.add(LSTM(4, input_shape=(1, look_back))) |
| 100 | +model.add(Dense(1)) |
| 101 | +model.compile(loss='mean_squared_error', optimizer='adam') |
| 102 | +model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2) |
| 103 | +``` |
| 104 | + |
| 105 | +Epoch 100/100 |
| 106 | +1s - loss: 0.0020 |
| 107 | + |
| 108 | +**预测:** |
| 109 | + |
| 110 | +```python |
| 111 | +# make predictions |
| 112 | +trainPredict = model.predict(trainX) |
| 113 | +testPredict = model.predict(testX) |
| 114 | +``` |
| 115 | + |
| 116 | +计算误差之前要先把预测数据转换成同一单位 |
| 117 | + |
| 118 | +```python |
| 119 | +# invert predictions |
| 120 | +trainPredict = scaler.inverse_transform(trainPredict) |
| 121 | +trainY = scaler.inverse_transform([trainY]) |
| 122 | +testPredict = scaler.inverse_transform(testPredict) |
| 123 | +testY = scaler.inverse_transform([testY]) |
| 124 | +``` |
| 125 | + |
| 126 | +**计算 mean squared error** |
| 127 | + |
| 128 | +```python |
| 129 | +trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0])) |
| 130 | +print('Train Score: %.2f RMSE' % (trainScore)) |
| 131 | +testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0])) |
| 132 | +print('Test Score: %.2f RMSE' % (testScore)) |
| 133 | +``` |
| 134 | +Train Score: 22.92 RMSE |
| 135 | +Test Score: 47.53 RMSE |
| 136 | + |
| 137 | +画出结果:蓝色为原数据,绿色为训练集的预测值,红色为测试集的预测值 |
| 138 | + |
| 139 | +```python |
| 140 | +# shift train predictions for plotting |
| 141 | +trainPredictPlot = numpy.empty_like(dataset) |
| 142 | +trainPredictPlot[:, :] = numpy.nan |
| 143 | +trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict |
| 144 | + |
| 145 | +# shift test predictions for plotting |
| 146 | +testPredictPlot = numpy.empty_like(dataset) |
| 147 | +testPredictPlot[:, :] = numpy.nan |
| 148 | +testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict |
| 149 | + |
| 150 | +# plot baseline and predictions |
| 151 | +plt.plot(scaler.inverse_transform(dataset)) |
| 152 | +plt.plot(trainPredictPlot) |
| 153 | +plt.plot(testPredictPlot) |
| 154 | +plt.show() |
| 155 | +``` |
| 156 | + |
| 157 | + |
| 158 | + |
| 159 | + |
| 160 | +上面的结果并不是最佳的,只是举一个例子来看 LSTM 是如何做时间序列的预测的 |
| 161 | +可以改进的地方,最直接的 隐藏层的神经元个数是不是变为 128 更好呢,隐藏层数是不是可以变成 2 或者更多呢,time steps 如果变成 3 会不会好一点 |
| 162 | + |
| 163 | +另外感兴趣的筒子可以想想,RNN 做时间序列的预测到底好不好呢 🐌 |
| 164 | + |
| 165 | +参考资料: |
| 166 | +http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/ |
| 167 | + |
| 168 | +--- |
| 169 | + |
| 170 | +推荐阅读 [历史技术博文链接汇总](http://www.jianshu.com/p/28f02bb59fe5) |
| 171 | +http://www.jianshu.com/p/28f02bb59fe5 |
| 172 | +也许可以找到你想要的 |
0 commit comments