forked from TensorSpeech/TensorFlowASR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_tfrecords.py
67 lines (50 loc) · 2.67 KB
/
create_tfrecords.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2020 Huy Le Nguyen (@usimarit)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
from tensorflow_asr.configs.config import Config
from tensorflow_asr.utils.file_util import preprocess_paths
from tensorflow_asr.datasets.asr_dataset import ASRTFRecordDataset
from tensorflow_asr.featurizers import speech_featurizers, text_featurizers
parser = argparse.ArgumentParser(prog="TFRecords Creation")
parser.add_argument("--mode", "-m", type=str, default=None, help="Mode")
parser.add_argument("--config", type=str, default=None, help="The file path of model configuration file")
parser.add_argument("--tfrecords_dir", type=str, default=None, help="Directory to tfrecords")
parser.add_argument("--tfrecords_shards", type=int, default=16, help="Number of tfrecords shards")
parser.add_argument("--shuffle", default=False, action="store_true", help="Shuffle data or not")
parser.add_argument("--sentence_piece", default=False, action="store_true", help="Whether to use `SentencePiece` model")
parser.add_argument("--subwords", type=str, default=None, help="Path to file that stores generated subwords")
parser.add_argument("transcripts", nargs="+", type=str, default=None, help="Paths to transcript files")
args = parser.parse_args()
transcripts = preprocess_paths(args.transcripts)
tfrecords_dir = preprocess_paths(args.tfrecords_dir, isdir=True)
config = Config(args.config)
speech_featurizer = speech_featurizers.TFSpeechFeaturizer(config.speech_config)
if args.sentence_piece:
print("Loading SentencePiece model ...")
text_featurizer = text_featurizers.SentencePieceFeaturizer.load_from_file(config.decoder_config, args.subwords)
elif args.subwords and os.path.exists(args.subwords):
print("Loading subwords ...")
text_featurizer = text_featurizers.SubwordFeaturizer.load_from_file(config.decoder_config, args.subwords)
else:
text_featurizer = text_featurizers.CharFeaturizer(config.decoder_config)
ASRTFRecordDataset(
data_paths=transcripts,
tfrecords_dir=tfrecords_dir,
speech_featurizer=speech_featurizer,
text_featurizer=text_featurizer,
stage=args.mode,
shuffle=args.shuffle,
tfrecords_shards=args.tfrecords_shards
).create_tfrecords()