forked from TensorSpeech/TensorFlowASR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconformer.py
92 lines (73 loc) · 3.97 KB
/
conformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# Copyright 2020 Huy Le Nguyen (@usimarit)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
from tensorflow_asr.utils import env_util
logger = env_util.setup_environment()
import tensorflow as tf
parser = argparse.ArgumentParser(prog="Conformer non streaming")
parser.add_argument("filename", metavar="FILENAME", help="audio file to be played back")
parser.add_argument("--config", type=str, default=None, help="Path to conformer config yaml")
parser.add_argument("--saved", type=str, default=None, help="Path to conformer saved h5 weights")
parser.add_argument("--beam_width", type=int, default=0, help="Beam width")
parser.add_argument("--timestamp", default=False, action="store_true", help="Return with timestamp")
parser.add_argument("--device", type=int, default=0, help="Device's id to run test on")
parser.add_argument("--cpu", default=False, action="store_true", help="Whether to only use cpu")
parser.add_argument("--subwords", type=str, default=None, help="Path to file that stores generated subwords")
parser.add_argument("--sentence_piece", default=False, action="store_true", help="Whether to use `SentencePiece` model")
args = parser.parse_args()
env_util.setup_devices([args.device], cpu=args.cpu)
from tensorflow_asr.configs.config import Config
from tensorflow_asr.featurizers.speech_featurizers import read_raw_audio
from tensorflow_asr.featurizers.speech_featurizers import TFSpeechFeaturizer
from tensorflow_asr.featurizers.text_featurizers import CharFeaturizer, SubwordFeaturizer, SentencePieceFeaturizer
from tensorflow_asr.models.transducer.conformer import Conformer
from tensorflow_asr.utils.data_util import create_inputs
config = Config(args.config)
speech_featurizer = TFSpeechFeaturizer(config.speech_config)
if args.sentence_piece:
logger.info("Loading SentencePiece model ...")
text_featurizer = SentencePieceFeaturizer.load_from_file(config.decoder_config, args.subwords)
elif args.subwords and os.path.exists(args.subwords):
logger.info("Loading subwords ...")
text_featurizer = SubwordFeaturizer.load_from_file(config.decoder_config, args.subwords)
else:
text_featurizer = CharFeaturizer(config.decoder_config)
text_featurizer.decoder_config.beam_width = args.beam_width
# build model
conformer = Conformer(**config.model_config, vocabulary_size=text_featurizer.num_classes)
conformer.make(speech_featurizer.shape)
conformer.load_weights(args.saved, by_name=True, skip_mismatch=True)
conformer.summary(line_length=120)
conformer.add_featurizers(speech_featurizer, text_featurizer)
signal = read_raw_audio(args.filename)
features = speech_featurizer.tf_extract(signal)
input_length = tf.shape(features)[0]
if args.beam_width:
inputs = create_inputs(features[None, ...], input_length[None, ...])
transcript = conformer.recognize_beam(inputs)
logger.info(f"Transcript: {transcript[0].numpy().decode('UTF-8')}")
elif args.timestamp:
transcript, stime, etime, _, _ = conformer.recognize_tflite_with_timestamp(
signal, tf.constant(text_featurizer.blank, dtype=tf.int32), conformer.predict_net.get_initial_state()
)
logger.info(f"Transcript: {transcript}")
logger.info(f"Start time: {stime}")
logger.info(f"End time: {etime}")
else:
code_points, _, _ = conformer.recognize_tflite(
signal, tf.constant(text_featurizer.blank, dtype=tf.int32), conformer.predict_net.get_initial_state()
)
transcript = tf.strings.unicode_encode(code_points, "UTF-8").numpy().decode("UTF-8")
logger.info(f"Transcript: {transcript}")