Skip to content

Latest commit

 

History

History
235 lines (182 loc) · 9.4 KB

OBJC_INTEROP.md

File metadata and controls

235 lines (182 loc) · 9.4 KB

Kotlin/Native interoperability with Swift/Objective-C

This documents covers some details of Kotlin/Native interoperability with Swift/Objective-C.

Usage

Kotlin/Native provides bidirectional interoperability with Objective-C. Objective-C frameworks and libraries can be used in Kotlin code if properly imported to the build (system frameworks are imported by default). See e.g. "Interop libraries" in Gradle plugin documentation. Swift library can be used in Kotlin code if its API is exported to Objective-C with @objc. Pure Swift modules are not yet supported.

Kotlin module can be used in Swift/Objective-C code if compiled into a framework. See calculator sample as an example.

Mappings

The table below shows how Kotlin concepts are mapped to Swift/Objective-C and vice versa.

Kotlin Swift Objective-C Notes
class class @interface note
interface protocol @protocol
constructor/create Initializer Initializer note
Property Property Property note
Method Method Method note note
@Throws throws error:(NSError**)error note
Extension Extension Category member note
companion member <- Class method or property Class method or property
null nil nil
Singleton Singleton() [Singleton singleton] note
Primitive type Primitive type / NSNumber note
Unit return type Void void
String String NSString
String NSMutableString NSMutableString note
List Array NSArray
MutableList NSMutableArray NSMutableArray
Set Set NSSet
MutableSet NSMutableSet NSMutableSet note
Map Dictionary NSDictionary
MutableMap NSMutableDictionary NSMutableDictionary note
Function type Function type Block pointer type note

Name translation

Objective-C classes are imported into Kotlin with their original names. Protocols are imported as interfaces with Protocol name suffix, i.e. @protocol Foo -> interface FooProtocol. These classes and interfaces are placed into package specified in build configuration (platform.* packages for preconfigured system frameworks).

Names of Kotlin classes and interfaces are prefixed when imported to Swift/Objective-C. The prefix is derived from the framework name.

Initializers

Swift/Objective-C initializers are imported to Kotlin as constructors and factory methods named create. The latter happens with initializers declared in Objective-C category or as Swift extension, because Kotlin has no concept of extension constructors.

Kotlin constructors are imported as initializers to Swift/Objective-C.

Top-level functions and properties

Top-level Kotlin functions and properties are accessible as members of a special class. Each Kotlin package is translated into such a class. E.g.

package my.library

fun foo() {}

can be called from Swift like

Framework.foo()

Method names translation

Generally Swift argument labels and Objective-C selector pieces are mapped to Kotlin parameter names. Anyway these two concepts have different semantics, so sometimes Swift/Objective-C methods can be imported with clashing Kotlin signature. In this case clashing methods can be called from Kotlin using named arguments, e.g.:

[player moveTo:LEFT byMeters:17]
[player moveTo:UP byInches:42]

in Kotlin would be:

player.moveTo(LEFT, byMeters = 17)
player.moveTo(UP, byInches = 42)

Errors and exceptions

Kotlin has no concept of checked exceptions, all Kotlin exceptions are unchecked. Swift has only checked errors. So if Swift or Objective-C code calls Kotlin method which throws an exception to be handled, then Kotlin method should be marked with @Throws annotation. In this case all Kotlin exceptions (except for instances of Error, RuntimeException and subclasses) are translated to Swift error/NSError.

Note that the opposite translation is not implemented yet: Swift/Objective-C error-throwing methods aren't imported to Kotlin as exception-throwing.

Category members

Members of Objective-C categories and Swift extensions are imported to Kotlin as extensions. That's why these declarations can't be overridden in Kotlin. And extension initializers aren't available as Kotlin constructors.

Kotlin singletons

Kotlin singleton (made with object declaration, including companion object) is imported to Swift/Objective-C as class with a single instance. The instance is available through the factory method, i.e. as [MySingleton mySingleton] in Objective-C and MySingleton() in Swift.

NSNumber

While Kotlin primitive types in some cases are mapped to NSNumber (e.g. when they are boxed), NSNumber type is not automatically translated to Kotlin primitive types when used as Swift/Objective-C parameter type or return value. The reason is that NSNumber type doesn't provide enough information about wrapped primitive value type, i.e. NSNumber is statically not known to be e.g. Byte, Boolean or Double. So Kotlin primitive values should be cast to/from NSNumber manually (see below).

NSMutableString

NSMutableString Objective-C class is not available from Kotlin. All instances of NSMutableString are copied when passed to Kotlin.

Collections

Kotlin collections are converted to Swift/Objective-C collections as described by the table above. Swift/Objective-C collections are mapped to Kotlin in the same way, except for NSMutableSet and NSMutableDictionary. NSMutableSet isn't converted to Kotlin MutableSet. To pass an object for Kotlin MutableSet, one can create this kind of Kotlin collection explicitly by either creating it in Kotlin with e.g. mutableSetOf(), or using ${prefix}MutableSet class in Swift/Objective-C, where prefix is the framework names prefix. The same holds for MutableMap.

Function types

Kotlin function-typed objects (e.g. lambdas) are converted to Swift functions / Objective-C blocks. However there is a difference in how types of parameters and return values are mapped when translating a function and a function type. In the latter case primitive types are mapped to their boxed representation, NSNumber. Kotlin Unit return value is represented as corresponding Unit singleton in Swift/Objective-C. The value of this singleton can be retrieved in the same way as for any other Kotlin object (see singletons in the table above). To sum the things up:

fun foo(block: (Int) -> Unit) { ... }

would be represented in Swift as

func foo(block: (NSNumber) -> KotlinUnit)

and can be called like

foo {
    bar($0 as! Int32)
    return KotlinUnit()
}

Casting between mapped types

When writing Kotlin code, an object may require to be converted from Kotlin type to equivalent Swift/Objective-C type (or vice versa). In this case plain old Kotlin cast can be used, e.g.

val nsArray = listOf(1, 2, 3) as NSArray
val string = nsString as String
val nsNumber = 42 as NSNumber

Subclassing

Subclassing Kotlin classes and interfaces from Swift/Objective-C

Kotlin classes and interfaces can be subclassed by Swift/Objective-C classes and protocols. Currently a class that adopts Kotlin protocol should inherit NSObject (either directly or indirectly). Note that all Kotlin classes do inherit NSObject, so a Swift/Objective-C subclass of Kotlin class can adopt Kotlin protocol.

Subclassing Swift/Objective-C classes and protocols from Kotlin

Swift/Objective-C classes and protocols can be subclassed with Kotlin final class. Non-final Kotlin classes inherting Swift/Objective-C types aren't supported yet, so it is not possible to declare a complex class hierarchy inherting Swift/Objective-C types.

Normal methods can be overridden using override Kotlin keyword. In this case overriding method must have the same parameter names as the overridden one.

Sometimes it is required to override initializers, e.g. when subclassing UIViewController. Initializers imported as Kotlin constructors can be overridden by Kotlin constructors marked with @OverrideInit annotation:

class ViewController : UIViewController {
    @OverrideInit constructor(coder: NSCoder) : super(coder)

    ...
}

The overriding constructor must have the same parameter names and types as the overridden one.

To override different methods with clashing Kotlin signatures, one can add @Suppress("CONFLICTING_OVERLOADS") annotation to the class.

By default Kotlin/Native compiler doesn't allow to call non-designated Objective-C initializer as super(...) constructor. This behaviour can be inconvenient if designated initializers aren't marked properly in the Objective-C library. Adding disableDesignatedInitializerChecks = true to .def file for this library would disable these compiler checks.

C features

See INTEROP.md for the case when library uses some plain C features (e.g. unsafe pointers, structs etc.).