-
Notifications
You must be signed in to change notification settings - Fork 1
/
modules.py
284 lines (239 loc) · 8.81 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
__author__ = "Alexander Frotscher"
__email__ = "alexander.frotscher@student.uni-tuebingen.de"
"""
This code is based on @dome272 implementation of DDPM's
https://github.com/dome272/Diffusion-Models-pytorch
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import LambdaLR
class EMA:
def __init__(self, beta):
super().__init__()
self.beta = beta
self.step = 0
def update_model_average(self, ema_model, current_model):
for current_params, ema_params in zip(
current_model.parameters(), ema_model.parameters()
):
old_weight, up_weight = ema_params.data, current_params.data
ema_params.data = self.update_average(old_weight, up_weight)
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
def step_ema(self, ema_model, model, step_start_ema=2000):
if self.step < step_start_ema:
self.reset_parameters(ema_model, model)
self.step += 1
return
self.update_model_average(ema_model, model)
self.step += 1
def reset_parameters(self, ema_model, model):
if type(model) in (
nn.parallel.DataParallel,
nn.parallel.DistributedDataParallel,
): # checks multiprocessing/multi-GPU's
ema_model.load_state_dict(model.module.state_dict())
else:
ema_model.load_state_dict(model.state_dict())
class LRWarmupCosineDecay(LambdaLR):
"""Linear warmup and then cosine decay.
Linearly increases the factor the learning rate is multiplied with from start_lr
to target_lr over the specified number of steps
Decreases this factor from target_lr to start_lr over remaining steps.
Set lr in optimizer to 1 to ensure that this factor equals the lr.
Parameters
----------
LambdaLR : _type_
PyTorch Class
Returns
-------
_type_
lr
"""
def __init__(
self, optimizer, warmup_steps, steps_total, start_lr, target_lr, last_epoch=-1
):
self.warmup_steps = warmup_steps
self.steps_total = steps_total
self.start_lr = start_lr
self.target_lr = target_lr
self.increase = (target_lr - start_lr) / warmup_steps
super(LRWarmupCosineDecay, self).__init__(
optimizer, self.lr_lambda, last_epoch=last_epoch
)
def lr_lambda(self, step):
if step < self.warmup_steps:
return self.start_lr + (step * self.increase)
return self.start_lr + (self.target_lr - self.start_lr) * (
(
1
+ math.cos(
math.pi
* (step - self.warmup_steps)
/ float(self.steps_total - self.warmup_steps)
)
)
* 0.5
)
class SelfAttention(nn.Module):
def __init__(self, channels, size):
super(SelfAttention, self).__init__()
self.channels = channels
self.size = size
self.mha = nn.MultiheadAttention(
channels, 4, batch_first=True
) # second argument is number of head -> increase
self.ln = nn.LayerNorm([channels])
self.ff_self = nn.Sequential(
nn.LayerNorm([channels]),
nn.Linear(channels, channels),
nn.GELU(),
nn.Linear(channels, channels),
)
def forward(self, x):
x = x.view(-1, self.channels, self.size * self.size).swapaxes(1, 2).contiguous()
x_ln = self.ln(x)
attention_value, _ = self.mha(x_ln, x_ln, x_ln)
attention_value = attention_value + x
attention_value = self.ff_self(attention_value) + attention_value
return (
attention_value.swapaxes(2, 1)
.view(-1, self.channels, self.size, self.size)
.contiguous()
)
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels, mid_channels=None, residual=False):
super().__init__()
self.residual = residual
if not mid_channels:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.GroupNorm(1, out_channels),
#nn.GELU(),
#nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
#nn.GroupNorm(1, out_channels),
)
def forward(self, x):
if self.residual:
return F.gelu(x + self.double_conv(x))
else:
return self.double_conv(x)
class Down(nn.Module):
def __init__(self, in_channels, out_channels, emb_dim=256):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, in_channels, residual=True),
DoubleConv(in_channels, out_channels),
)
self.emb_layer = nn.Sequential(
nn.SiLU(),
nn.Linear(emb_dim, out_channels),
)
def forward(self, x, t):
x = self.maxpool_conv(x)
emb = self.emb_layer(t)[:, :, None, None].repeat(1, 1, x.shape[-2], x.shape[-1])
return x + emb
class Up(nn.Module):
def __init__(self, in_channels, out_channels, emb_dim=256):
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True)
self.conv = nn.Sequential(
DoubleConv(in_channels, in_channels, residual=True),
DoubleConv(in_channels, out_channels),
)
self.emb_layer = nn.Sequential(
nn.SiLU(),
nn.Linear(emb_dim, out_channels),
)
def forward(self, x, skip_x, t):
x = self.up(x)
x = torch.cat([skip_x, x], dim=1)
x = self.conv(x)
emb = self.emb_layer(t)[:, :, None, None].repeat(1, 1, x.shape[-2], x.shape[-1])
return x + emb
class UNet(nn.Module):
def __init__(self, c_in=4, c_out=4, img_size=128, time_dim=256, device="cuda"):
super().__init__()
self.device = device
self.time_dim = time_dim
self.inc = DoubleConv(c_in, 32) # c_in, c_out
self.inc2 = DoubleConv(32, 32, residual=True)
self.down1 = Down(32, 64)
self.down2 = Down(64, 128) # c_in, c_out
self.sa1 = SelfAttention(128, int(img_size / 4)) # c_in, image_size
self.down3 = Down(128, 256)
self.sa2 = SelfAttention(256, int(img_size / 8))
self.down4 = Down(256, 256)
self.sa3 = SelfAttention(256, int(img_size / 16))
self.bot1 = DoubleConv(256, 512)
#self.bot = DoubleConv(256, 256)
self.bot3 = DoubleConv(512, 256)
self.sa4 = SelfAttention(256,int(img_size / 16))
self.up1 = Up(512, 128)
self.sa5 = SelfAttention(128, int(img_size / 8))
self.up2 = Up(256, 64)
self.sa6 = SelfAttention(64, int(img_size / 4))
self.up3 = Up(128, 32)
self.up4 = Up(64,32)
self.outc = nn.Conv2d(32, c_out, kernel_size=1)
def pos_encoding(self, t, channels):
inv_freq = 1.0 / (
10000
** (torch.arange(0, channels, 2, device=self.device).float() / channels)
)
pos_enc_a = torch.sin(t.repeat(1, channels // 2) * inv_freq)
pos_enc_b = torch.cos(t.repeat(1, channels // 2) * inv_freq)
pos_enc = torch.cat([pos_enc_a, pos_enc_b], dim=-1)
return pos_enc
def unet_forward(self, x, t):
x1 = self.inc(x)
x1 = self.inc2(x1)
x2 = self.down1(x1, t)
x3 = self.down2(x2, t)
x3 = self.sa1(x3)
x4 = self.down3(x3, t)
x4 = self.sa2(x4)
x5 = self.down4(x4, t)
x5 = self.sa3(x5)
x5 = self.bot1(x5)
#x5 = self.bot(x5)
x5 = self.bot3(x5)
x = self.sa4(x5)
x = self.up1(x, x4, t)
x = self.sa5(x)
x = self.up2(x, x3, t)
x = self.sa6(x)
x = self.up3(x, x2, t)
x = self.up4(x, x1, t)
output = self.outc(x)
return output
def forward(self, x, t):
t = t.unsqueeze(-1).type(x.dtype)
t = self.pos_encoding(t, self.time_dim)
return self.unet_forward(x, t)
class UNet_conditional(UNet):
def __init__(
self,
c_in=4,
c_out=4,
img_size=128,
time_dim=256,
num_classes=None,
device="cuda",
):
super().__init__(c_in, c_out, img_size, time_dim, device)
if num_classes is not None:
self.label_emb = nn.Embedding(num_classes, time_dim)
def forward(self, x, t, y):
# t = t.unsqueeze(-1).type(torch.float)
t = t.unsqueeze(-1).type(x.dtype)
t = self.pos_encoding(t, self.time_dim)
if y is not None:
t += self.label_emb(y)
return self.unet_forward(x, t)