Skip to content
This repository was archived by the owner on Jan 14, 2022. It is now read-only.

Commit 1cf4d45

Browse files
author
AlexZhu
committed
Finished Chapter 3
1 parent 8e24815 commit 1cf4d45

File tree

14 files changed

+99
-20
lines changed

14 files changed

+99
-20
lines changed

Project.tex

Lines changed: 70 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -470,26 +470,76 @@ \section{\sc III. Open the gate to frequency domain}
470470
&= \ \left(\frac{A_0}{2}\right)^2 + \frac{1}{2}\sum\limits_{n=1}^{\infty}A_n^2 \nonumber
471471
\end{align}
472472
This is called Parseval's Theorem. \par
473-
\centering
474-
\begin{tikzpicture}
475-
\draw[gray!80] (-2,0) -- (-2,0.1);
476-
\draw[gray!80] (2,0) -- (2,0.1);
477-
\draw[->] (-3,0) -- (3,0) node[right] {$t$};
478-
\draw[->] (0,-0.2) -- (0,2) node[above] {$f(t)$};
479-
\draw[blue,line width=1pt] (-2.5,0) -- (-2.5,1);
480-
\draw[blue,line width=1pt] (-2.5,1) -- (-1.5,1);
481-
\draw[blue,line width=1pt] (-1.5,1) -- (-1.5,0);
482-
\draw[blue,line width=1pt] (-0.5,0) -- (-0.5,1);
483-
\draw[blue,line width=1pt] (-0.5,1) -- (0.5,1);
484-
\draw[blue,line width=1pt] (0.5,1) -- (0.5,0);
485-
\draw[blue,line width=1pt] (1.5,0) -- (1.5,1);
486-
\draw[blue,line width=1pt] (1.5,1) -- (2.5,1);
487-
\draw[blue,line width=1pt] (2.5,1) -- (2.5,0);
488-
\node at (-2,-0.2) {$-T$};
489-
\node at (2,-0.2) {$T$};
490-
\node at (-0.5,-0.3) {$-\frac{\tau}{2}$};
491-
\node at (0.5,-0.3) {$\frac{\tau}{2}$};
492-
\end{tikzpicture}
473+
474+
\begin{figure}[H]
475+
\centering
476+
\begin{tikzpicture}
477+
\draw[gray!80] (-2,0) -- (-2,0.1);
478+
\draw[gray!80] (2,0) -- (2,0.1);
479+
\draw[->] (-3,0) -- (3,0) node[right] {$t$};
480+
\draw[->] (0,-0.2) -- (0,2) node[above] {$f(t)$};
481+
\draw[blue,line width=1pt] (-2.5,0) -- (-2.5,1);
482+
\draw[blue,line width=1pt] (-2.5,1) -- (-1.5,1);
483+
\draw[blue,line width=1pt] (-1.5,1) -- (-1.5,0);
484+
\draw[blue,line width=1pt] (-0.5,0) -- (-0.5,1);
485+
\draw[blue,line width=1pt] (-0.5,1) -- (0.5,1);
486+
\draw[blue,line width=1pt] (0.5,1) -- (0.5,0);
487+
\draw[blue,line width=1pt] (1.5,0) -- (1.5,1);
488+
\draw[blue,line width=1pt] (1.5,1) -- (2.5,1);
489+
\draw[blue,line width=1pt] (2.5,1) -- (2.5,0);
490+
\node at (-2,-0.2) {$-T$};
491+
\node at (2,-0.2) {$T$};
492+
\node at (-0.5,-0.3) {$-\frac{\tau}{2}$};
493+
\node at (0.5,-0.3) {$\frac{\tau}{2}$};
494+
\end{tikzpicture}
495+
\centering\textbf{Signal 1}
496+
\end{figure}
497+
498+
If we have a signal which like \textbf{Signal 1}, we can get
499+
500+
\begin{align}
501+
C_n &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn \Omega t} \dif t \nonumber \\
502+
&= \left. \frac{1}{T} \cfrac{ e^{-j \Omega t} }{ -jn\Omega } \right|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \nonumber \\
503+
&= \frac{\tau}{T}Sa(\frac{n\pi \tau}{T}) \nonumber
504+
\end{align}
505+
506+
Then we can define the signal bandwidth: \\
507+
\textbf{The spectrum bandwidth contains most significant harmonics contributing in signal construction}. \par
508+
So we can obtain that reject harmonics beyond bandwidth does not distort signal severely. Then we can set $\tau$ and $T$ to some unique value. Firstly, we can set $T$ to a constant value $4$, while changing the ratio of $T$ to $\tau$.
509+
\begin{figure}[H]
510+
\centerline{\includegraphics[width=0.9\linewidth]{figure/bw_1.png}}
511+
\centerline{\textbf{$\tau = \frac{T}{4} = 1$}}
512+
\end{figure}
513+
\begin{figure}[H]
514+
\centerline{\includegraphics[width=0.9\linewidth]{figure/bw_2.png}}
515+
\centerline{\textbf{$\tau = \frac{T}{8} = 0.5$}}
516+
\end{figure}
517+
\begin{figure}[H]
518+
\centerline{\includegraphics[width=0.9\linewidth]{figure/bw_3.png}}
519+
\centerline{\textbf{$\tau = \frac{T}{16} = 0.25$}}
520+
\end{figure}
521+
According to the three figures above, we can conclude
522+
\textbf{the 1st reciprocal relation between time-domain and frequency-domain:}
523+
The more expand the signal is in time-domain, the more compressed the signal is in frequency-domain. In short, the signal bandwidth is inversely proportional to the time duration of the signal $\tau$.
524+
Also, we can set $\tau$ to a constant value, and change the the ratio of $\tau$ to $T$.
525+
\begin{figure}[H]
526+
\centerline{\includegraphics[width=0.9\linewidth]{figure/bw_4.png}}
527+
\centerline{\textbf{$T = 4\tau = 1$}}
528+
\end{figure}
529+
\begin{figure}[H]
530+
\centerline{\includegraphics[width=0.9\linewidth]{figure/bw_5.png}}
531+
\centerline{\textbf{$T = 8\tau = 1$}}
532+
\end{figure}
533+
\begin{figure}[H]
534+
\centerline{\includegraphics[width=0.9\linewidth]{figure/bw_6.png}}
535+
\centerline{\textbf{$T = 16\tau = 1$}}
536+
\end{figure}
537+
And through these three figures, we can obtain two other conclusions:
538+
\begin{itemize}
539+
\item \textbf{Invariant $T$ and decreasing $\tau$:} The gap remains unchanged while signal bandwidth increases.
540+
\item \textbf{Invariant $\tau$ and increasing $T$:} The gap shrinks while signal bandwidth not change.
541+
\end{itemize}
542+
At this time, we will have a question, if $T$ tends to infinity, what will happen in the frequency domain. If $T\rightarrow \infty$, the signal will change from periodic to aperiodic. We can boldly assume that when the time-domain is aperiodic, the frequency-domain will become continuous. And let's prove it.
493543
\clearpage
494544

495545
\section{\sc IV. From periodicity to aperiodicity}

code/Drawbw.m

Lines changed: 29 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,29 @@
1+
clc;clear;close all;
2+
N=10000;
3+
T=16;
4+
tau=1;
5+
t=linspace(-tau/2-0.5,T+0.5*tau+0.5,N);
6+
f=t*0;
7+
ind = t>=-0.5*tau & t<0.5*tau;
8+
f(ind)=1;
9+
ind = t>=T-0.5*tau & t<0.5*tau+T;
10+
f(ind)=1;
11+
12+
omg=2*pi/T;
13+
n=-200:200;
14+
n=n*omg;
15+
spec=tau/T*sinc(n*tau/2/pi);
16+
17+
t0=linspace(-200,200,N);
18+
t0=t0*omg;
19+
sl=tau/T*sinc(t0*tau/2/pi);
20+
21+
subplot(1,2,1);
22+
plot(t,f);
23+
ylim([0,1.5]);
24+
subplot(1,2,2);
25+
hold on;
26+
stem(n,spec,'fill','-');
27+
plot(t0,sl,'blue--');
28+
ylim([min(spec),max(spec)]);
29+
xlim([-30,30]);

code/bw/bw_1.fig

79.1 KB
Binary file not shown.

code/bw/bw_2.fig

81.5 KB
Binary file not shown.

code/bw/bw_3.fig

78.3 KB
Binary file not shown.

code/bw/bw_4.fig

509 KB
Binary file not shown.

code/bw/bw_5.fig

519 KB
Binary file not shown.

code/bw/bw_6.fig

489 KB
Binary file not shown.

figure/bw_1.png

28.2 KB
Loading

figure/bw_2.png

29.8 KB
Loading

0 commit comments

Comments
 (0)