All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog.
- opt LVL
- Update dependencies
- ValueError: X and y both have indexes, but they do not match.
- TypeError in data_prepare Outliers filter
- Up score AutoML (Blend best top5 models in AutoML)
- optimization DataPreproc parametrs in BestSingleModel
- rebuild AutoML pepline (light version)
- target encodet only cat features
- target encoder in model.opt
- add dosc on CV
- Fix nans in targetencoder in CV
- Target Encoding in CrossValidation
- DenoisingAutoencoder in DataPrepare
- Docs
- Fix import - add loguru and psutil in requirements.txt
- Advanced Logging (logs in .automl-alex_tmp/log.log)
- Class Optimizer
- Pruner in optimizer
- connection with optuna-dashboard (run > optuna-dashboard sqlite:///db.sqlite3 )
- NumericInteractionFeatures Class in data_prepare
- Fix save & load in AutoML
- Metod .score() and .fit_score() in Models
- Class CrossValidation() examples in ./examples/03_Models.ipynb
- same Fixses in AutoML
- New info in Readme.md
A big update that changes the logic of work
- Now processing the dataset is separated from the model for ease of use when you want to process the dataset yourself
- Separate transform allows us to save and transfer processing to new data
- Save & Load processing
- Save & Load model
- Reduce memory usage processing
- Detect and remove outliers
- score_cv_folds fix in ModelsReview
- normalization
- multivariate TPE sampler. This algorithm captures dependencies among hyperparameters better than the previous algorithm
- "ValueError non-broadcastable output operand..." in AutoMLRegressor
- DataConversionWarning in sklearn_models model.fit(X_train, y_train,)
- verbose in LinearRegression
- if y_train is not pd.DataFrame
- Calc predict policy in AutoML
- timelemit in AutoML (deleted Catboost in optimization)
- Stacking in AutoML
- fit on full X_Train (no_CV)
- predict on full X in model_1 AutoML
- AutoML model_2 score
- Iterations in .opt
- timelemit in AutoML
- Num Features Generator in empty Num Features list
- Features Generation in DataBunch
- Features Selection in .opt
- Generator interaction Num Features
- Generator FrequencyEncoder Features
- Generator Group Encoder Features
- Normalization Data
- Feature Importance
- RandomForest min_samples_split size
- fix ModelsReview opt cv
- remove target encoding
- remove norm data
- rebuild cross_val
- preparation for the addition of FEs
- add Docs in functions
- Try Fix .self buffer bug
- Fix dataset size < 1000
- Default stack_top=10 in AutoML
- predicts in DataFrame
- predicts from configs
- RepeatedKFold in CV for prediction.
n_repeats=2
in .cv()
- Stacking metamodel now
LinearModel
- in Stacking .predict
n_repeats=2
=>n_repeats=1
(timelimit :( )
- Fix Timelimit Error in Stacking