Code for the paper "Action Flow Matching for Continual Robot Learning" presented at Robotics: Science and Systems (RSS) 2025.
AFM enables efficient, non-episodic, online robot model refinement. AFM adjusts the planned actions seeking to reduce the gap between the intended and realized/actual state transitions.
Before setting up the environment, clone this repository and navigate to the root directory:
git clone https://github.com/AlejandroMllo/action_flow_matching.git
cd action_flow_matching
We recommend creating a dedicated Conda environment for this project.
-
Create the environment:
conda create -n afm python=3.10.16 -y
-
Activate the environment:
conda activate afm
Install required Python packages:
pip install -r requirements.txt
All required datasets and pre-trained model weights are hosted on Hugging Face (https://huggingface.co/AlejandroMllo/action_flow_matching):
-
Install Hugging Face Hub CLI:
pip install huggingface_hub
-
Download Models: From the project's root, type:
hf download AlejandroMllo/action_flow_matching --exclude data/* --local-dir .
-
[Optional] Download Dataset:
hf download AlejandroMllo/action_flow_matching --exclude artifacts/* --local-dir .
After downloading the pretrained checkpoints and (optionally) the datasets, your project root should look like:
.
├── .git/
├── .gitignore
├── README.md
├── artifacts/
│ └── ugv/
│ ├── afm/
│ │ └── latest_model.pth
│ └── dynamics/
│ ├── model_0
│ ├── model_1
│ ├── model_2
│ ├── model_3
│ └── model_4
├── assets/
├── data/
│ └── ugv/
│ ├── afm_data_dubins.pt
│ ├── ugv_transition_dynamics_delta.csv
│ └── ugv_transition_dynamics_val_delta.csv
├── requirements.txt
├── results/ # If you already have any
└── src/
Run the experiments from the continual_dynamics_learning.py
script (note that you need to navigate to /src
):
cd src/
python continual_dynamics_learning.py
The results will be automatically saved at the same level of the /src
directory in the /results
folder.
If you use this code, please cite our paper:
@article{murillogonzalez2025afm,
title={Action Flow Matching for Continual Robot Learning},
author={Murillo-Gonzalez, Alejandro and Liu, Lantao},
journal={Robotics: Science and Systems (RSS)},
year={2025}
}
For questions or issues, please contact:
- Alejandro Murillo-Gonzalez: almuri@iu.edu
Feel free to open GitHub issues or pull requests for contributions.