forked from rsxdalv/tts-generation-webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsettings_tab_bark.py
232 lines (204 loc) · 8.15 KB
/
settings_tab_bark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import gradio as gr
from src.config.config import config
from src.config.save_config_bark import save_config_bark
from src.model_manager import model_manager
from src.utils.setup_or_recover import generate_env
def settings_tab_bark() -> None:
with gr.Tab("Settings (Bark)") as settings_tab, gr.Row(equal_height=False):
with gr.Column():
load_models_on_startup = gr.Checkbox(
label="Load Bark models on startup",
value=config["load_models_on_startup"],
)
with gr.Row(variant="panel"):
gr.Markdown("### Text generation:")
text_use_gpu = gr.Checkbox(
label="Use GPU",
value=config["model"]["text_use_gpu"],
)
text_use_small = gr.Checkbox(
label="Use small model",
value=config["model"]["text_use_small"],
)
with gr.Row(variant="panel"):
gr.Markdown("### Coarse-to-fine inference:", scale=2)
coarse_use_gpu = gr.Checkbox(
label="Use GPU",
value=config["model"]["coarse_use_gpu"],
)
coarse_use_small = gr.Checkbox(
label="Use small model",
value=config["model"]["coarse_use_small"],
)
with gr.Row(variant="panel"):
gr.Markdown("### Fine-tuning:")
fine_use_gpu = gr.Checkbox(
label="Use GPU",
value=config["model"]["fine_use_gpu"],
)
fine_use_small = gr.Checkbox(
label="Use small model",
value=config["model"]["fine_use_small"],
)
with gr.Row(variant="panel"):
gr.Markdown("### Codec:")
codec_use_gpu = gr.Checkbox(
label="Use GPU for codec",
value=config["model"]["codec_use_gpu"],
scale=2,
)
save_beacon = gr.Markdown("")
gr.Markdown(
"""
## Environment variables
(Requires restart)
"""
)
ENV_SMALL_MODELS = os.environ.get("SUNO_USE_SMALL_MODELS", "").lower() in (
"true",
"1",
)
ENV_ENABLE_MPS = os.environ.get("SUNO_ENABLE_MPS", "").lower() in (
"true",
"1",
)
ENV_OFFLOAD_CPU = os.environ.get("SUNO_OFFLOAD_CPU", "").lower() in (
"true",
"1",
)
environment_suno_use_small_models = gr.Checkbox(
label="Use small models", value=ENV_SMALL_MODELS
)
environment_suno_enable_mps = gr.Checkbox(
label="Enable MPS", value=ENV_ENABLE_MPS
)
environment_suno_offload_cpu = gr.Checkbox(
label="Offload GPU models to CPU", value=ENV_OFFLOAD_CPU
)
def save_environment_variables(
environment_suno_use_small_models,
environment_suno_enable_mps,
environment_suno_offload_cpu,
):
from bark import generation
generation.USE_SMALL_MODELS = environment_suno_use_small_models
generation.GLOBAL_ENABLE_MPS = environment_suno_enable_mps
generation.OFFLOAD_CPU = environment_suno_offload_cpu
os.environ["SUNO_USE_SMALL_MODELS"] = str(
environment_suno_use_small_models
)
os.environ["SUNO_ENABLE_MPS"] = str(environment_suno_enable_mps)
os.environ["SUNO_OFFLOAD_CPU"] = str(environment_suno_offload_cpu)
from src.utils.setup_or_recover import write_env
write_env(
generate_env(
environment_suno_use_small_models=environment_suno_use_small_models,
environment_suno_enable_mps=environment_suno_enable_mps,
environment_suno_offload_cpu=environment_suno_offload_cpu,
)
)
env_inputs = [
environment_suno_use_small_models,
environment_suno_enable_mps,
environment_suno_offload_cpu,
]
for i in env_inputs:
i.change(
fn=save_environment_variables,
inputs=env_inputs,
api_name=i == env_inputs[0]
and "save_environment_variables_bark"
or None,
)
# refresh environment variables button
inputs = [
text_use_gpu,
text_use_small,
coarse_use_gpu,
coarse_use_small,
fine_use_gpu,
fine_use_small,
codec_use_gpu,
load_models_on_startup,
]
for i in inputs:
i.change(
fn=save_config_bark,
inputs=inputs,
outputs=[save_beacon],
api_name=i == inputs[0] and "save_config_bark" or None,
)
def sync_ui():
def checkbox_update_helper(key: str):
return gr.Checkbox.update(value=config["model"][key])
return [
checkbox_update_helper("text_use_gpu"),
checkbox_update_helper("text_use_small"),
checkbox_update_helper("coarse_use_gpu"),
checkbox_update_helper("coarse_use_small"),
checkbox_update_helper("fine_use_gpu"),
checkbox_update_helper("fine_use_small"),
checkbox_update_helper("codec_use_gpu"),
gr.Checkbox.update(value=config["load_models_on_startup"]),
]
settings_tab.select(fn=sync_ui, outputs=inputs, api_name="get_config_bark")
def set_to_reload():
return gr.Button.update(value="Loading...", interactive=False)
with gr.Column():
gr.Markdown(
"""
# Recommended settings:
* For VRAM >= 10GB, use large models.
* For VRAM < 10GB, use small models.
* Text generation and coarse-to-fine are of similar importance.
* Small models might not have a perceptible difference in the result.
* For VRAM < 4GB, use CPU offloading (requires restart).
* Small models are also recommended.
* For VRAM < 2GB, use CPU offloading and small models (requires restart).
"""
)
load_button = gr.Button(
value="Reload models"
if config["load_models_on_startup"]
else "Load models"
)
load_button.click(fn=set_to_reload, inputs=[], outputs=[load_button])
load_button.click(
fn=load_models,
inputs=[
text_use_gpu,
text_use_small,
coarse_use_gpu,
coarse_use_small,
fine_use_gpu,
fine_use_small,
codec_use_gpu,
],
outputs=[load_button],
show_progress=True,
)
def load_models(
text_use_gpu,
text_use_small,
coarse_use_gpu,
coarse_use_small,
fine_use_gpu,
fine_use_small,
codec_use_gpu,
):
save_config_bark(
text_use_gpu,
text_use_small,
coarse_use_gpu,
coarse_use_small,
fine_use_gpu,
fine_use_small,
codec_use_gpu,
)
try:
model_manager.reload_models(config)
return gr.Button.update(value="Reload models", interactive=True)
except Exception as e:
print(e)
return gr.Button.update(value="Failed to load models", interactive=True)