forked from keras-team/keras-io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeypoint_detection.py
445 lines (351 loc) · 14.1 KB
/
keypoint_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
"""
Title: Keypoint Detection with Transfer Learning
Author: [Sayak Paul](https://twitter.com/RisingSayak)
Date created: 2021/05/02
Last modified: 2021/05/02
Description: Training a keypoint detector with data augmentation and transfer learning.
"""
"""
Keypoint detection consists of locating key object parts. For example, the key parts
of our faces include nose tips, eyebrows, eye corners, and so on. These parts help to
represent the underlying object in a feature-rich manner. Keypoint detection has
applications that include pose estimation, face detection, etc.
In this example, we will build a keypoint detector using the
[StanfordExtra dataset](https://github.com/benjiebob/StanfordExtra),
using transfer learning. This example requires TensorFlow 2.4 or higher,
as well as [`imgaug`](https://imgaug.readthedocs.io/) library,
which can be installed using the following command:
"""
"""shell
pip install -q -U imgaug
"""
"""
## Data collection
"""
"""
The StanfordExtra dataset contains 12,000 images of dogs together with keypoints and
segmentation maps. It is developed from the [Stanford dogs dataset](http://vision.stanford.edu/aditya86/ImageNetDogs/).
It can be downloaded with the command below:
"""
"""shell
wget -q http://vision.stanford.edu/aditya86/ImageNetDogs/images.tar
"""
"""
Annotations are provided as a single JSON file in the StanfordExtra dataset and one needs
to fill [this form](https://forms.gle/sRtbicgxsWvRtRmUA) to get access to it. The
authors explicitly instruct users not to share the JSON file, and this example respects this wish:
you should obtain the JSON file yourself.
The JSON file is expected to be locally available as `stanfordextra_v12.zip`.
After the files are downloaded, we can extract the archives.
"""
"""shell
tar xf images.tar
unzip -qq ~/stanfordextra_v12.zip
"""
"""
## Imports
"""
from tensorflow.keras import layers
from tensorflow import keras
import tensorflow as tf
from imgaug.augmentables.kps import KeypointsOnImage
from imgaug.augmentables.kps import Keypoint
import imgaug.augmenters as iaa
from PIL import Image
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
import pandas as pd
import numpy as np
import json
import os
"""
## Define hyperparameters
"""
IMG_SIZE = 224
BATCH_SIZE = 64
EPOCHS = 5
NUM_KEYPOINTS = 24 * 2 # 24 pairs each having x and y coordinates
"""
## Load data
The authors also provide a metadata file that specifies additional information about the
keypoints, like color information, animal pose name, etc. We will load this file in a `pandas`
dataframe to extract information for visualization purposes.
"""
IMG_DIR = "Images"
JSON = "StanfordExtra_V12/StanfordExtra_v12.json"
KEYPOINT_DEF = (
"https://github.com/benjiebob/StanfordExtra/raw/master/keypoint_definitions.csv"
)
# Load the ground-truth annotations.
with open(JSON) as infile:
json_data = json.load(infile)
# Set up a dictionary, mapping all the ground-truth information
# with respect to the path of the image.
json_dict = {i["img_path"]: i for i in json_data}
"""
A single entry of `json_dict` looks like the following:
```
'n02085782-Japanese_spaniel/n02085782_2886.jpg':
{'img_bbox': [205, 20, 116, 201],
'img_height': 272,
'img_path': 'n02085782-Japanese_spaniel/n02085782_2886.jpg',
'img_width': 350,
'is_multiple_dogs': False,
'joints': [[108.66666666666667, 252.0, 1],
[147.66666666666666, 229.0, 1],
[163.5, 208.5, 1],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[54.0, 244.0, 1],
[77.33333333333333, 225.33333333333334, 1],
[79.0, 196.5, 1],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[150.66666666666666, 86.66666666666667, 1],
[88.66666666666667, 73.0, 1],
[116.0, 106.33333333333333, 1],
[109.0, 123.33333333333333, 1],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]],
'seg': ...}
```
"""
"""
In this example, the keys we are interested in are:
* `img_path`
* `joints`
There are a total of 24 entries present inside `joints`. Each entry has 3 values:
* x-coordinate
* y-coordinate
* visibility flag of the keypoints (1 indicates visibility and 0 indicates non-visibility)
As we can see `joints` contain multiple `[0, 0, 0]` entries which denote that those
keypoints were not labeled. In this example, we will consider both non-visible as well as
unlabeled keypoints in order to allow mini-batch learning.
"""
# Load the metdata definition file and preview it.
keypoint_def = pd.read_csv(KEYPOINT_DEF)
keypoint_def.head()
# Extract the colours and labels.
colours = keypoint_def["Hex colour"].values.tolist()
colours = ["#" + colour for colour in colours]
labels = keypoint_def["Name"].values.tolist()
# Utility for reading an image and for getting its annotations.
def get_dog(name):
data = json_dict[name]
img_data = plt.imread(os.path.join(IMG_DIR, data["img_path"]))
# If the image is RGBA convert it to RGB.
if img_data.shape[-1] == 4:
img_data = img_data.astype(np.uint8)
img_data = Image.fromarray(img_data)
img_data = np.array(img_data.convert("RGB"))
data["img_data"] = img_data
return data
"""
## Visualize data
Now, we write a utility function to visualize the images and their keypoints.
"""
# Parts of this code come from here:
# https://github.com/benjiebob/StanfordExtra/blob/master/demo.ipynb
def visualize_keypoints(images, keypoints):
fig, axes = plt.subplots(nrows=len(images), ncols=2, figsize=(16, 12))
[ax.axis("off") for ax in np.ravel(axes)]
for (ax_orig, ax_all), image, current_keypoint in zip(axes, images, keypoints):
ax_orig.imshow(image)
ax_all.imshow(image)
# If the keypoints were formed by `imgaug` then the coordinates need
# to be iterated differently.
if isinstance(current_keypoint, KeypointsOnImage):
for idx, kp in enumerate(current_keypoint.keypoints):
ax_all.scatter(
[kp.x], [kp.y], c=colours[idx], marker="x", s=50, linewidths=5
)
else:
current_keypoint = np.array(current_keypoint)
# Since the last entry is the visibility flag, we discard it.
current_keypoint = current_keypoint[:, :2]
for idx, (x, y) in enumerate(current_keypoint):
ax_all.scatter([x], [y], c=colours[idx], marker="x", s=50, linewidths=5)
plt.tight_layout(pad=2.0)
plt.show()
# Select four samples randomly for visualization.
samples = list(json_dict.keys())
num_samples = 4
selected_samples = np.random.choice(samples, num_samples, replace=False)
images, keypoints = [], []
for sample in selected_samples:
data = get_dog(sample)
image = data["img_data"]
keypoint = data["joints"]
images.append(image)
keypoints.append(keypoint)
visualize_keypoints(images, keypoints)
"""
The plots show that we have images of non-uniform sizes, which is expected in most
real-world scenarios. However, if we resize these images to have a uniform shape (for
instance (224 x 224)) their ground-truth annotations will also be affected. The same
applies if we apply any geometric transformation (horizontal flip, for e.g.) to an image.
Fortunately, `imgaug` provides utilities that can handle this issue.
In the next section, we will write a data generator inheriting the
[`keras.utils.Sequence`](https://keras.io/api/utils/python_utils/#sequence-class) class
that applies data augmentation on batches of data using `imgaug`.
"""
"""
## Prepare data generator
"""
class KeyPointsDataset(keras.utils.Sequence):
def __init__(self, image_keys, aug, batch_size=BATCH_SIZE, train=True):
self.image_keys = image_keys
self.aug = aug
self.batch_size = batch_size
self.train = train
self.on_epoch_end()
def __len__(self):
return len(self.image_keys) // self.batch_size
def on_epoch_end(self):
self.indexes = np.arange(len(self.image_keys))
if self.train:
np.random.shuffle(self.indexes)
def __getitem__(self, index):
indexes = self.indexes[index * self.batch_size : (index + 1) * self.batch_size]
image_keys_temp = [self.image_keys[k] for k in indexes]
(images, keypoints) = self.__data_generation(image_keys_temp)
return (images, keypoints)
def __data_generation(self, image_keys_temp):
batch_images = np.empty((self.batch_size, IMG_SIZE, IMG_SIZE, 3), dtype="int")
batch_keypoints = np.empty(
(self.batch_size, 1, 1, NUM_KEYPOINTS), dtype="float32"
)
for i, key in enumerate(image_keys_temp):
data = get_dog(key)
current_keypoint = np.array(data["joints"])[:, :2]
kps = []
# To apply our data augmentation pipeline, we first need to
# form Keypoint objects with the original coordinates.
for j in range(0, len(current_keypoint)):
kps.append(Keypoint(x=current_keypoint[j][0], y=current_keypoint[j][1]))
# We then project the original image and its keypoint coordinates.
current_image = data["img_data"]
kps_obj = KeypointsOnImage(kps, shape=current_image.shape)
# Apply the augmentation pipeline.
(new_image, new_kps_obj) = self.aug(image=current_image, keypoints=kps_obj)
batch_images[i,] = new_image
# Parse the coordinates from the new keypoint object.
kp_temp = []
for keypoint in new_kps_obj:
kp_temp.append(np.nan_to_num(keypoint.x))
kp_temp.append(np.nan_to_num(keypoint.y))
# More on why this reshaping later.
batch_keypoints[i,] = np.array(kp_temp).reshape(1, 1, 24 * 2)
# Scale the coordinates to [0, 1] range.
batch_keypoints = batch_keypoints / IMG_SIZE
return (batch_images, batch_keypoints)
"""
To know more about how to operate with keypoints in `imgaug` check out
[this document](https://imgaug.readthedocs.io/en/latest/source/examples_keypoints.html).
"""
"""
## Define augmentation transforms
"""
train_aug = iaa.Sequential(
[
iaa.Resize(IMG_SIZE, interpolation="linear"),
iaa.Fliplr(0.3),
# `Sometimes()` applies a function randomly to the inputs with
# a given probability (0.3, in this case).
iaa.Sometimes(0.3, iaa.Affine(rotate=10, scale=(0.5, 0.7))),
]
)
test_aug = iaa.Sequential([iaa.Resize(IMG_SIZE, interpolation="linear")])
"""
## Create training and validation splits
"""
np.random.shuffle(samples)
train_keys, validation_keys = (
samples[int(len(samples) * 0.15) :],
samples[: int(len(samples) * 0.15)],
)
"""
## Data generator investigation
"""
train_dataset = KeyPointsDataset(train_keys, train_aug)
validation_dataset = KeyPointsDataset(validation_keys, test_aug, train=False)
print(f"Total batches in training set: {len(train_dataset)}")
print(f"Total batches in validation set: {len(validation_dataset)}")
sample_images, sample_keypoints = next(iter(train_dataset))
assert sample_keypoints.max() == 1.0
assert sample_keypoints.min() == 0.0
sample_keypoints = sample_keypoints[:4].reshape(-1, 24, 2) * IMG_SIZE
visualize_keypoints(sample_images[:4], sample_keypoints)
"""
## Model building
The [Stanford dogs dataset](http://vision.stanford.edu/aditya86/ImageNetDogs/) (on which
the StanfordExtra dataset is based) was built using the [ImageNet-1k dataset](http://image-net.org/).
So, it is likely that the models pretrained on the ImageNet-1k dataset would be useful
for this task. We will use a MobileNetV2 pre-trained on this dataset as a backbone to
extract meaningful features from the images and then pass those to a custom regression
head for predicting coordinates.
"""
def get_model():
# Load the pre-trained weights of MobileNetV2 and freeze the weights
backbone = keras.applications.MobileNetV2(
weights="imagenet", include_top=False, input_shape=(IMG_SIZE, IMG_SIZE, 3)
)
backbone.trainable = False
inputs = layers.Input((IMG_SIZE, IMG_SIZE, 3))
x = keras.applications.mobilenet_v2.preprocess_input(inputs)
x = backbone(x)
x = layers.Dropout(0.3)(x)
x = layers.SeparableConv2D(
NUM_KEYPOINTS, kernel_size=5, strides=1, activation="relu"
)(x)
outputs = layers.SeparableConv2D(
NUM_KEYPOINTS, kernel_size=3, strides=1, activation="sigmoid"
)(x)
return keras.Model(inputs, outputs, name="keypoint_detector")
"""
Our custom network is fully-convolutional which makes it more parameter-friendly than the
same version of the network having fully-connected dense layers.
"""
get_model().summary()
"""
Notice the output shape of the network: `(None, 1, 1, 48)`. This is why we have reshaped
the coordinates as: `batch_keypoints[i, :] = np.array(kp_temp).reshape(1, 1, 24 * 2)`.
"""
"""
## Model compilation and training
For this example, we will train the network only for five epochs.
"""
model = get_model()
model.compile(loss="mse", optimizer=keras.optimizers.Adam(1e-4))
model.fit(train_dataset, validation_data=validation_dataset, epochs=EPOCHS)
"""
## Make predictions and visualize them
"""
sample_val_images, sample_val_keypoints = next(iter(validation_dataset))
sample_val_images = sample_val_images[:4]
sample_val_keypoints = sample_val_keypoints[:4].reshape(-1, 24, 2) * IMG_SIZE
predictions = model.predict(sample_val_images).reshape(-1, 24, 2) * IMG_SIZE
# Ground-truth
visualize_keypoints(sample_val_images, sample_val_keypoints)
# Predictions
visualize_keypoints(sample_val_images, predictions)
"""
Predictions will likely improve with more training.
"""
"""
## Going further
* Try using other augmentation transforms from `imgaug` to investigate how that changes
the results.
* Here, we transferred the features from the pre-trained network linearly that is we did
not [fine-tune](https://keras.io/guides/transfer_learning/) it. You are encouraged to fine-tune it on this task and see if that
improves the performance. You can also try different architectures and see how they
affect the final performance.
"""