forked from keras-team/keras-io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnode2vec_movielens.py
587 lines (467 loc) · 17.9 KB
/
node2vec_movielens.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
"""
Title: Graph representation learning with node2vec
Author: [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)
Date created: 2021/05/15
Last modified: 2021/05/15
Description: Implementing the node2vec model to generate embeddings for movies from the MovieLens dataset.
"""
"""
## Introduction
Learning useful representations from objects structured as graphs is useful for
a variety of machine learning (ML) applications—such as social and communication networks analysis,
biomedicine studies, and recommendation systems.
[Graph representation Learning](https://www.cs.mcgill.ca/~wlh/grl_book/) aims to
learn embeddings for the graph nodes, which can be used for a variety of ML tasks
such as node label prediction (e.g. categorizing an article based on its citations)
and link prediction (e.g. recommending an interest group to a user in a social network).
[node2vec](https://arxiv.org/abs/1607.00653) is a simple, yet scalable and effective
technique for learning low-dimensional embeddings for nodes in a graph by optimizing
a neighborhood-preserving objective. The aim is to learn similar embeddings for
neighboring nodes, with respect to the graph structure.
Given your data items structured as a graph (where the items are represented as
nodes and the relationship between items are represented as edges),
node2vec works as follows:
1. Generate item sequences using (biased) random walk.
2. Create positive and negative training examples from these sequences.
3. Train a [word2vec](https://www.tensorflow.org/tutorials/text/word2vec) model
(skip-gram) to learn embeddings for the items.
In this example, we demonstrate the node2vec technique on the
[small version of the Movielens dataset](https://files.grouplens.org/datasets/movielens/ml-latest-small-README.html)
to learn movie embeddings. Such a dataset can be represented as a graph by treating
the movies as nodes, and creating edges between movies that have similar ratings
by the users. The learnt movie embeddings can be used for tasks such as movie recommendation,
or movie genres prediction.
This example requires `networkx` package, which can be installed using the following command:
```shell
pip install networkx
```
"""
"""
## Setup
"""
import os
from collections import defaultdict
import math
import networkx as nx
import random
from tqdm import tqdm
from zipfile import ZipFile
from urllib.request import urlretrieve
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
"""
## Download the MovieLens dataset and prepare the data
The small version of the MovieLens dataset includes around 100k ratings
from 610 users on 9,742 movies.
First, let's download the dataset. The downloaded folder will contain
three data files: `users.csv`, `movies.csv`, and `ratings.csv`. In this example,
we will only need the `movies.dat`, and `ratings.dat` data files.
"""
urlretrieve(
"http://files.grouplens.org/datasets/movielens/ml-latest-small.zip", "movielens.zip"
)
ZipFile("movielens.zip", "r").extractall()
"""
Then, we load the data into a Pandas DataFrame and perform some basic preprocessing.
"""
# Load movies to a DataFrame.
movies = pd.read_csv("ml-latest-small/movies.csv")
# Create a `movieId` string.
movies["movieId"] = movies["movieId"].apply(lambda x: f"movie_{x}")
# Load ratings to a DataFrame.
ratings = pd.read_csv("ml-latest-small/ratings.csv")
# Convert the `ratings` to floating point
ratings["rating"] = ratings["rating"].apply(lambda x: float(x))
# Create the `movie_id` string.
ratings["movieId"] = ratings["movieId"].apply(lambda x: f"movie_{x}")
print("Movies data shape:", movies.shape)
print("Ratings data shape:", ratings.shape)
"""
Let's inspect a sample instance of the `ratings` DataFrame.
"""
ratings.head()
"""
Next, let's check a sample instance of the `movies` DataFrame.
"""
movies.head()
"""
Implement two utility functions for the `movies` DataFrame.
"""
def get_movie_title_by_id(movieId):
return list(movies[movies.movieId == movieId].title)[0]
def get_movie_id_by_title(title):
return list(movies[movies.title == title].movieId)[0]
"""
## Construct the Movies graph
We create an edge between two movie nodes in the graph if both movies are rated
by the same user >= `min_rating`. The weight of the edge will be based on the
[pointwise mutual information](https://en.wikipedia.org/wiki/Pointwise_mutual_information)
between the two movies, which is computed as: `log(xy) - log(x) - log(y) + log(D)`, where:
* `xy` is how many users rated both movie `x` and movie `y` with >= `min_rating`.
* `x` is how many users rated movie `x` >= `min_rating`.
* `y` is how many users rated movie `y` >= `min_rating`.
* `D` total number of movie ratings >= `min_rating`.
"""
"""
### Step 1: create the weighted edges between movies.
"""
min_rating = 5
pair_frequency = defaultdict(int)
item_frequency = defaultdict(int)
# Filter instances where rating is greater than or equal to min_rating.
rated_movies = ratings[ratings.rating >= min_rating]
# Group instances by user.
movies_grouped_by_users = list(rated_movies.groupby("userId"))
for group in tqdm(
movies_grouped_by_users,
position=0,
leave=True,
desc="Compute movie rating frequencies",
):
# Get a list of movies rated by the user.
current_movies = list(group[1]["movieId"])
for i in range(len(current_movies)):
item_frequency[current_movies[i]] += 1
for j in range(i + 1, len(current_movies)):
x = min(current_movies[i], current_movies[j])
y = max(current_movies[i], current_movies[j])
pair_frequency[(x, y)] += 1
"""
### Step 2: create the graph with the nodes and the edges
To reduce the number of edges between nodes, we only add an edge between movies
if the weight of the edge is greater than `min_weight`.
"""
min_weight = 10
D = math.log(sum(item_frequency.values()))
# Create the movies undirected graph.
movies_graph = nx.Graph()
# Add weighted edges between movies.
# This automatically adds the movie nodes to the graph.
for pair in tqdm(
pair_frequency, position=0, leave=True, desc="Creating the movie graph"
):
x, y = pair
xy_frequency = pair_frequency[pair]
x_frequency = item_frequency[x]
y_frequency = item_frequency[y]
pmi = math.log(xy_frequency) - math.log(x_frequency) - math.log(y_frequency) + D
weight = pmi * xy_frequency
# Only include edges with weight >= min_weight.
if weight >= min_weight:
movies_graph.add_edge(x, y, weight=weight)
"""
Let's display the total number of nodes and edges in the graph.
Note that the number of nodes is less than the total number of movies,
since only the movies that have edges to other movies are added.
"""
print("Total number of graph nodes:", movies_graph.number_of_nodes())
print("Total number of graph edges:", movies_graph.number_of_edges())
"""
Let's display the average node degree (number of neighbours) in the graph.
"""
degrees = []
for node in movies_graph.nodes:
degrees.append(movies_graph.degree[node])
print("Average node degree:", round(sum(degrees) / len(degrees), 2))
"""
### Step 3: Create vocabulary and a mapping from tokens to integer indices
The vocabulary is the nodes (movie IDs) in the graph.
"""
vocabulary = ["NA"] + list(movies_graph.nodes)
vocabulary_lookup = {token: idx for idx, token in enumerate(vocabulary)}
"""
## Implement the biased random walk
A random walk starts from a given node, and randomly picks a neighbour node to move to.
If the edges are weighted, the neighbour is selected *probabilistically* with
respect to weights of the edges between the current node and its neighbours.
This procedure is repeated for `num_steps` to generate a sequence of *related* nodes.
The [*biased* random walk](https://en.wikipedia.org/wiki/Biased_random_walk_on_a_graph) balances between **breadth-first sampling**
(where only local neighbours are visited) and **depth-first sampling**
(where distant neighbours are visited) by introducing the following two parameters:
1. **Return parameter** (`p`): Controls the likelihood of immediately revisiting
a node in the walk. Setting it to a high value encourages moderate exploration,
while setting it to a low value would keep the walk local.
2. **In-out parameter** (`q`): Allows the search to differentiate
between *inward* and *outward* nodes. Setting it to a high value biases the
random walk towards local nodes, while setting it to a low value biases the walk
to visit nodes which are further away.
"""
def next_step(graph, previous, current, p, q):
neighbors = list(graph.neighbors(current))
weights = []
# Adjust the weights of the edges to the neighbors with respect to p and q.
for neighbor in neighbors:
if neighbor == previous:
# Control the probability to return to the previous node.
weights.append(graph[current][neighbor]["weight"] / p)
elif graph.has_edge(neighbor, previous):
# The probability of visiting a local node.
weights.append(graph[current][neighbor]["weight"])
else:
# Control the probability to move forward.
weights.append(graph[current][neighbor]["weight"] / q)
# Compute the probabilities of visiting each neighbor.
weight_sum = sum(weights)
probabilities = [weight / weight_sum for weight in weights]
# Probabilistically select a neighbor to visit.
next = np.random.choice(neighbors, size=1, p=probabilities)[0]
return next
def random_walk(graph, num_walks, num_steps, p, q):
walks = []
nodes = list(graph.nodes())
# Perform multiple iterations of the random walk.
for walk_iteration in range(num_walks):
random.shuffle(nodes)
for node in tqdm(
nodes,
position=0,
leave=True,
desc=f"Random walks iteration {walk_iteration + 1} of {num_walks}",
):
# Start the walk with a random node from the graph.
walk = [node]
# Randomly walk for num_steps.
while len(walk) < num_steps:
current = walk[-1]
previous = walk[-2] if len(walk) > 1 else None
# Compute the next node to visit.
next = next_step(graph, previous, current, p, q)
walk.append(next)
# Replace node ids (movie ids) in the walk with token ids.
walk = [vocabulary_lookup[token] for token in walk]
# Add the walk to the generated sequence.
walks.append(walk)
return walks
"""
## Generate training data using the biased random walk
You can explore different configurations of `p` and `q` to different results of
related movies.
"""
# Random walk return parameter.
p = 1
# Random walk in-out parameter.
q = 1
# Number of iterations of random walks.
num_walks = 5
# Number of steps of each random walk.
num_steps = 10
walks = random_walk(movies_graph, num_walks, num_steps, p, q)
print("Number of walks generated:", len(walks))
"""
## Generate positive and negative examples
To train a skip-gram model, we use the generated walks to create positive and
negative training examples. Each example includes the following features:
1. `target`: A movie in a walk sequence.
2. `context`: Another movie in a walk sequence.
3. `weight`: How many times these two movies occured in walk sequences.
4. `label`: The label is 1 if these two movies are samples from the walk sequences,
otherwise (i.e., if randomly sampled) the label is 0.
"""
"""
### Generate examples
"""
def generate_examples(sequences, window_size, num_negative_samples, vocabulary_size):
example_weights = defaultdict(int)
# Iterate over all sequences (walks).
for sequence in tqdm(
sequences,
position=0,
leave=True,
desc=f"Generating postive and negative examples",
):
# Generate positive and negative skip-gram pairs for a sequence (walk).
pairs, labels = keras.preprocessing.sequence.skipgrams(
sequence,
vocabulary_size=vocabulary_size,
window_size=window_size,
negative_samples=num_negative_samples,
)
for idx in range(len(pairs)):
pair = pairs[idx]
label = labels[idx]
target, context = min(pair[0], pair[1]), max(pair[0], pair[1])
if target == context:
continue
entry = (target, context, label)
example_weights[entry] += 1
targets, contexts, labels, weights = [], [], [], []
for entry in example_weights:
weight = example_weights[entry]
target, context, label = entry
targets.append(target)
contexts.append(context)
labels.append(label)
weights.append(weight)
return np.array(targets), np.array(contexts), np.array(labels), np.array(weights)
num_negative_samples = 4
targets, contexts, labels, weights = generate_examples(
sequences=walks,
window_size=num_steps,
num_negative_samples=num_negative_samples,
vocabulary_size=len(vocabulary),
)
"""
Let's display the shapes of the outputs
"""
print(f"Targets shape: {targets.shape}")
print(f"Contexts shape: {contexts.shape}")
print(f"Labels shape: {labels.shape}")
print(f"Weights shape: {weights.shape}")
"""
### Convert the data into `tf.data.Dataset` objects
"""
batch_size = 1024
def create_dataset(targets, contexts, labels, weights, batch_size):
inputs = {
"target": targets,
"context": contexts,
}
dataset = tf.data.Dataset.from_tensor_slices((inputs, labels, weights))
dataset = dataset.shuffle(buffer_size=batch_size * 2)
dataset = dataset.batch(batch_size, drop_remainder=True)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
return dataset
dataset = create_dataset(
targets=targets,
contexts=contexts,
labels=labels,
weights=weights,
batch_size=batch_size,
)
"""
## Train the skip-gram model
Our skip-gram is a simple binary classification model that works as follows:
1. An embedding is looked up for the `target` movie.
2. An embedding is looked up for the `context` movie.
3. The dot product is computed between these two embeddings.
4. The result (after a sigmoid activation) is compared to the label.
5. A binary crossentropy loss is used.
"""
learning_rate = 0.001
embedding_dim = 50
num_epochs = 10
"""
### Implement the model
"""
def create_model(vocabulary_size, embedding_dim):
inputs = {
"target": layers.Input(name="target", shape=(), dtype="int32"),
"context": layers.Input(name="context", shape=(), dtype="int32"),
}
# Initialize item embeddings.
embed_item = layers.Embedding(
input_dim=vocabulary_size,
output_dim=embedding_dim,
embeddings_initializer="he_normal",
embeddings_regularizer=keras.regularizers.l2(1e-6),
name="item_embeddings",
)
# Lookup embeddings for target.
target_embeddings = embed_item(inputs["target"])
# Lookup embeddings for context.
context_embeddings = embed_item(inputs["context"])
# Compute dot similarity between target and context embeddings.
logits = layers.Dot(axes=1, normalize=False, name="dot_similarity")(
[target_embeddings, context_embeddings]
)
# Create the model.
model = keras.Model(inputs=inputs, outputs=logits)
return model
"""
### Train the model
"""
"""
We instantiate the model and compile it.
"""
model = create_model(len(vocabulary), embedding_dim)
model.compile(
optimizer=keras.optimizers.Adam(learning_rate),
loss=keras.losses.BinaryCrossentropy(from_logits=True),
)
"""
Let's plot the model.
"""
keras.utils.plot_model(
model, show_shapes=True, show_dtype=True, show_layer_names=True,
)
"""
Now we train the model on the `dataset`.
"""
history = model.fit(dataset, epochs=num_epochs)
"""
Finally we plot the learning history.
"""
plt.plot(history.history["loss"])
plt.ylabel("loss")
plt.xlabel("epoch")
plt.show()
"""
## Analyze the learnt embeddings.
"""
movie_embeddings = model.get_layer("item_embeddings").get_weights()[0]
print("Embeddings shape:", movie_embeddings.shape)
"""
### Find related movies
Define a list with some movies called `query_movies`.
"""
query_movies = [
"Matrix, The (1999)",
"Star Wars: Episode IV - A New Hope (1977)",
"Lion King, The (1994)",
"Terminator 2: Judgment Day (1991)",
"Godfather, The (1972)",
]
"""
Get the embeddings of the movies in `query_movies`.
"""
query_embeddings = []
for movie_title in query_movies:
movieId = get_movie_id_by_title(movie_title)
token_id = vocabulary_lookup[movieId]
movie_embedding = movie_embeddings[token_id]
query_embeddings.append(movie_embedding)
query_embeddings = np.array(query_embeddings)
"""
Compute the [consine similarity](https://en.wikipedia.org/wiki/Cosine_similarity) between the embeddings of `query_movies`
and all the other movies, then pick the top k for each.
"""
similarities = tf.linalg.matmul(
tf.math.l2_normalize(query_embeddings),
tf.math.l2_normalize(movie_embeddings),
transpose_b=True,
)
_, indices = tf.math.top_k(similarities, k=5)
indices = indices.numpy().tolist()
"""
Display the top related movies in `query_movies`.
"""
for idx, title in enumerate(query_movies):
print(title)
print("".rjust(len(title), "-"))
similar_tokens = indices[idx]
for token in similar_tokens:
similar_movieId = vocabulary[token]
similar_title = get_movie_title_by_id(similar_movieId)
print(f"- {similar_title}")
print()
"""
### Visualize the embeddings using the Embedding Projector
"""
import io
out_v = io.open("embeddings.tsv", "w", encoding="utf-8")
out_m = io.open("metadata.tsv", "w", encoding="utf-8")
for idx, movie_id in enumerate(vocabulary[1:]):
movie_title = list(movies[movies.movieId == movie_id].title)[0]
vector = movie_embeddings[idx]
out_v.write("\t".join([str(x) for x in vector]) + "\n")
out_m.write(movie_title + "\n")
out_v.close()
out_m.close()
"""
Download the `embeddings.tsv` and `metadata.tsv` to analyze the obtained embeddings
in the [Embedding Projector](https://projector.tensorflow.org/).
"""