-
Notifications
You must be signed in to change notification settings - Fork 90
Closed
Description
Is there an existing issue for this?
- I have searched the existing issues
Bug description
New commit failed to load model files.
cebra_error.md
Operating System
Windows 11
CEBRA version
0.4.0
Device type
gpu
Steps To Reproduce
No response
Relevant log output
/usr/local/lib/python3.10/dist-packages/cebra/integrations/sklearn/cebra.py:1436: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
checkpoint = torch.load(filename, **kwargs)
/usr/local/lib/python3.10/dist-packages/sklearn/utils/_tags.py:354: FutureWarning: The CEBRA or classes from which it inherits use `_get_tags` and `_more_tags`. Please define the `__sklearn_tags__` method, or inherit from `sklearn.base.BaseEstimator` and/or other appropriate mixins such as `sklearn.base.TransformerMixin`, `sklearn.base.ClassifierMixin`, `sklearn.base.RegressorMixin`, and `sklearn.base.OutlierMixin`. From scikit-learn 1.7, not defining `__sklearn_tags__` will raise an error.
warnings.warn(
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
/usr/local/lib/python3.10/dist-packages/IPython/core/formatters.py in __call__(self, obj, include, exclude)
968
969 if method is not None:
--> 970 return method(include=include, exclude=exclude)
971 return None
972 else:
4 frames
/usr/local/lib/python3.10/dist-packages/sklearn/base.py in __sklearn_tags__(self)
857
858 def __sklearn_tags__(self):
--> 859 tags = super().__sklearn_tags__()
860 tags.transformer_tags = TransformerTags()
861 return tags
AttributeError: 'super' object has no attribute '__sklearn_tags__'
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
/usr/local/lib/python3.10/dist-packages/IPython/core/formatters.py in __call__(self, obj)
343 method = get_real_method(obj, self.print_method)
344 if method is not None:
--> 345 return method()
346 return None
347 else:
4 frames
/usr/local/lib/python3.10/dist-packages/sklearn/base.py in __sklearn_tags__(self)
857
858 def __sklearn_tags__(self):
--> 859 tags = super().__sklearn_tags__()
860 tags.transformer_tags = TransformerTags()
861 return tags
AttributeError: 'super' object has no attribute '__sklearn_tags__'
CEBRA(batch_size=2048, conditional='time_delta', learning_rate=0.0005,
max_iterations=12000, model_architecture='offset10-model',
num_hidden_units=64, output_dimension=3, temperature=1, time_offsets=10,
verbose=True)
Anything else?
No response
Code of Conduct
- I agree to follow this project's Code of Conduct
Metadata
Metadata
Assignees
Labels
No labels