|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 4, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "df = pd.read_fwf('data/headlines.txt')\n", |
| 10 | + "df.columns = ['headline']" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": 29, |
| 16 | + "metadata": {}, |
| 17 | + "outputs": [ |
| 18 | + { |
| 19 | + "data": { |
| 20 | + "text/html": [ |
| 21 | + "<div>\n", |
| 22 | + "<style scoped>\n", |
| 23 | + " .dataframe tbody tr th:only-of-type {\n", |
| 24 | + " vertical-align: middle;\n", |
| 25 | + " }\n", |
| 26 | + "\n", |
| 27 | + " .dataframe tbody tr th {\n", |
| 28 | + " vertical-align: top;\n", |
| 29 | + " }\n", |
| 30 | + "\n", |
| 31 | + " .dataframe thead th {\n", |
| 32 | + " text-align: right;\n", |
| 33 | + " }\n", |
| 34 | + "</style>\n", |
| 35 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 36 | + " <thead>\n", |
| 37 | + " <tr style=\"text-align: right;\">\n", |
| 38 | + " <th></th>\n", |
| 39 | + " <th>headline</th>\n", |
| 40 | + " </tr>\n", |
| 41 | + " </thead>\n", |
| 42 | + " <tbody>\n", |
| 43 | + " <tr>\n", |
| 44 | + " <td>0</td>\n", |
| 45 | + " <td>Could Zika Reach New York City?</td>\n", |
| 46 | + " </tr>\n", |
| 47 | + " <tr>\n", |
| 48 | + " <td>1</td>\n", |
| 49 | + " <td>First Case of Zika in Miami Beach</td>\n", |
| 50 | + " </tr>\n", |
| 51 | + " <tr>\n", |
| 52 | + " <td>2</td>\n", |
| 53 | + " <td>Mystery Virus Spreads in Recife, Brazil</td>\n", |
| 54 | + " </tr>\n", |
| 55 | + " <tr>\n", |
| 56 | + " <td>3</td>\n", |
| 57 | + " <td>Dallas man comes down with case of Zika</td>\n", |
| 58 | + " </tr>\n", |
| 59 | + " <tr>\n", |
| 60 | + " <td>4</td>\n", |
| 61 | + " <td>Trinidad confirms first Zika case</td>\n", |
| 62 | + " </tr>\n", |
| 63 | + " </tbody>\n", |
| 64 | + "</table>\n", |
| 65 | + "</div>" |
| 66 | + ], |
| 67 | + "text/plain": [ |
| 68 | + " headline\n", |
| 69 | + "0 Could Zika Reach New York City?\n", |
| 70 | + "1 First Case of Zika in Miami Beach\n", |
| 71 | + "2 Mystery Virus Spreads in Recife, Brazil\n", |
| 72 | + "3 Dallas man comes down with case of Zika\n", |
| 73 | + "4 Trinidad confirms first Zika case" |
| 74 | + ] |
| 75 | + }, |
| 76 | + "execution_count": 29, |
| 77 | + "metadata": {}, |
| 78 | + "output_type": "execute_result" |
| 79 | + } |
| 80 | + ], |
| 81 | + "source": [ |
| 82 | + "df.head()" |
| 83 | + ] |
| 84 | + }, |
| 85 | + { |
| 86 | + "cell_type": "code", |
| 87 | + "execution_count": 46, |
| 88 | + "metadata": {}, |
| 89 | + "outputs": [], |
| 90 | + "source": [ |
| 91 | + "import geonamescache\n", |
| 92 | + "\n", |
| 93 | + "gc = geonamescache.GeonamesCache()\n", |
| 94 | + "countries = gc.get_countries()\n", |
| 95 | + "cities = gc.get_cities()" |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": 58, |
| 101 | + "metadata": {}, |
| 102 | + "outputs": [], |
| 103 | + "source": [ |
| 104 | + "country_names = []\n", |
| 105 | + "country_ids = list(countries.keys())\n", |
| 106 | + "for country_id in country_ids:\n", |
| 107 | + " country_names.append(countries[country_id]['name'])" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": 60, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [ |
| 115 | + { |
| 116 | + "data": { |
| 117 | + "text/plain": [ |
| 118 | + "252" |
| 119 | + ] |
| 120 | + }, |
| 121 | + "execution_count": 60, |
| 122 | + "metadata": {}, |
| 123 | + "output_type": "execute_result" |
| 124 | + } |
| 125 | + ], |
| 126 | + "source": [ |
| 127 | + "len(country_names)" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": 73, |
| 133 | + "metadata": {}, |
| 134 | + "outputs": [ |
| 135 | + { |
| 136 | + "data": { |
| 137 | + "text/plain": [ |
| 138 | + "['Andorra',\n", |
| 139 | + " 'United Arab Emirates',\n", |
| 140 | + " 'Afghanistan',\n", |
| 141 | + " 'Antigua and Barbuda',\n", |
| 142 | + " 'Anguilla',\n", |
| 143 | + " 'Albania',\n", |
| 144 | + " 'Armenia',\n", |
| 145 | + " 'Angola',\n", |
| 146 | + " 'Antarctica',\n", |
| 147 | + " 'Argentina',\n", |
| 148 | + " 'American Samoa',\n", |
| 149 | + " 'Austria',\n", |
| 150 | + " 'Australia',\n", |
| 151 | + " 'Aruba',\n", |
| 152 | + " 'Aland Islands',\n", |
| 153 | + " 'Azerbaijan',\n", |
| 154 | + " 'Bosnia and Herzegovina',\n", |
| 155 | + " 'Barbados',\n", |
| 156 | + " 'Bangladesh',\n", |
| 157 | + " 'Belgium']" |
| 158 | + ] |
| 159 | + }, |
| 160 | + "execution_count": 73, |
| 161 | + "metadata": {}, |
| 162 | + "output_type": "execute_result" |
| 163 | + } |
| 164 | + ], |
| 165 | + "source": [ |
| 166 | + "country_names[:20]" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "code", |
| 171 | + "execution_count": 68, |
| 172 | + "metadata": {}, |
| 173 | + "outputs": [], |
| 174 | + "source": [ |
| 175 | + "city_names = []\n", |
| 176 | + "city_ids = list(cities.keys())\n", |
| 177 | + "for city_id in city_ids:\n", |
| 178 | + " city_names.append(cities[city_id]['name'])" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "code", |
| 183 | + "execution_count": 70, |
| 184 | + "metadata": {}, |
| 185 | + "outputs": [ |
| 186 | + { |
| 187 | + "data": { |
| 188 | + "text/plain": [ |
| 189 | + "24336" |
| 190 | + ] |
| 191 | + }, |
| 192 | + "execution_count": 70, |
| 193 | + "metadata": {}, |
| 194 | + "output_type": "execute_result" |
| 195 | + } |
| 196 | + ], |
| 197 | + "source": [ |
| 198 | + "len(city_names)" |
| 199 | + ] |
| 200 | + }, |
| 201 | + { |
| 202 | + "cell_type": "code", |
| 203 | + "execution_count": 94, |
| 204 | + "metadata": {}, |
| 205 | + "outputs": [ |
| 206 | + { |
| 207 | + "data": { |
| 208 | + "text/plain": [ |
| 209 | + "['Andorra la Vella',\n", |
| 210 | + " 'Umm Al Quwain City',\n", |
| 211 | + " 'Ras Al Khaimah City',\n", |
| 212 | + " 'Zayed City',\n", |
| 213 | + " 'Khawr Fakkān',\n", |
| 214 | + " 'Dubai',\n", |
| 215 | + " 'Dibba Al-Fujairah',\n", |
| 216 | + " 'Dibba Al-Hisn',\n", |
| 217 | + " 'Sharjah',\n", |
| 218 | + " 'Ar Ruways',\n", |
| 219 | + " 'Al Fujairah City',\n", |
| 220 | + " 'Al Ain City',\n", |
| 221 | + " 'Ajman City',\n", |
| 222 | + " 'Adh Dhayd',\n", |
| 223 | + " 'Abu Dhabi',\n", |
| 224 | + " 'Khalifah A City',\n", |
| 225 | + " 'Bani Yas City',\n", |
| 226 | + " 'Musaffah',\n", |
| 227 | + " 'Al Shamkhah City',\n", |
| 228 | + " 'Reef Al Fujairah City']" |
| 229 | + ] |
| 230 | + }, |
| 231 | + "execution_count": 94, |
| 232 | + "metadata": {}, |
| 233 | + "output_type": "execute_result" |
| 234 | + } |
| 235 | + ], |
| 236 | + "source": [ |
| 237 | + "city_names[:20]" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": 89, |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "from unidecode import unidecode\n", |
| 247 | + "\n", |
| 248 | + "city_names_unidecoded = [unidecode(city) for city in city_names]" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "code", |
| 253 | + "execution_count": 93, |
| 254 | + "metadata": {}, |
| 255 | + "outputs": [ |
| 256 | + { |
| 257 | + "data": { |
| 258 | + "text/plain": [ |
| 259 | + "['Andorra la Vella',\n", |
| 260 | + " 'Umm Al Quwain City',\n", |
| 261 | + " 'Ras Al Khaimah City',\n", |
| 262 | + " 'Zayed City',\n", |
| 263 | + " 'Khawr Fakkan',\n", |
| 264 | + " 'Dubai',\n", |
| 265 | + " 'Dibba Al-Fujairah',\n", |
| 266 | + " 'Dibba Al-Hisn',\n", |
| 267 | + " 'Sharjah',\n", |
| 268 | + " 'Ar Ruways',\n", |
| 269 | + " 'Al Fujairah City',\n", |
| 270 | + " 'Al Ain City',\n", |
| 271 | + " 'Ajman City',\n", |
| 272 | + " 'Adh Dhayd',\n", |
| 273 | + " 'Abu Dhabi',\n", |
| 274 | + " 'Khalifah A City',\n", |
| 275 | + " 'Bani Yas City',\n", |
| 276 | + " 'Musaffah',\n", |
| 277 | + " 'Al Shamkhah City',\n", |
| 278 | + " 'Reef Al Fujairah City']" |
| 279 | + ] |
| 280 | + }, |
| 281 | + "execution_count": 93, |
| 282 | + "metadata": {}, |
| 283 | + "output_type": "execute_result" |
| 284 | + } |
| 285 | + ], |
| 286 | + "source": [ |
| 287 | + "city_names_unidecoded[:20]" |
| 288 | + ] |
| 289 | + }, |
| 290 | + { |
| 291 | + "cell_type": "code", |
| 292 | + "execution_count": 104, |
| 293 | + "metadata": {}, |
| 294 | + "outputs": [], |
| 295 | + "source": [ |
| 296 | + "pattern_country = '|'.join(country_names)\n", |
| 297 | + "pattern_city = '|'.join(city_names)\n", |
| 298 | + "\n", |
| 299 | + "def pattern_searcher(search_str:str, search_list:str):\n", |
| 300 | + " search_obj = re.search(search_list, search_str)\n", |
| 301 | + " if search_obj :\n", |
| 302 | + " return_str = search_str[search_obj.start(): search_obj.end()]\n", |
| 303 | + " else:\n", |
| 304 | + " return_str = 'NA'\n", |
| 305 | + " return return_str\n", |
| 306 | + "\n", |
| 307 | + "df['country'] = df['headline'].apply(lambda x: pattern_searcher(search_str=x, search_list=pattern_country))\n", |
| 308 | + "df['city'] = df['headline'].apply(lambda x: pattern_searcher(search_str=x, search_list=pattern_city))" |
| 309 | + ] |
| 310 | + }, |
| 311 | + { |
| 312 | + "cell_type": "code", |
| 313 | + "execution_count": 107, |
| 314 | + "metadata": {}, |
| 315 | + "outputs": [], |
| 316 | + "source": [ |
| 317 | + "df = df.replace('NA', np.nan)" |
| 318 | + ] |
| 319 | + }, |
| 320 | + { |
| 321 | + "cell_type": "code", |
| 322 | + "execution_count": 108, |
| 323 | + "metadata": {}, |
| 324 | + "outputs": [ |
| 325 | + { |
| 326 | + "data": { |
| 327 | + "text/plain": [ |
| 328 | + "headline 0\n", |
| 329 | + "country 633\n", |
| 330 | + "city 40\n", |
| 331 | + "dtype: int64" |
| 332 | + ] |
| 333 | + }, |
| 334 | + "execution_count": 108, |
| 335 | + "metadata": {}, |
| 336 | + "output_type": "execute_result" |
| 337 | + } |
| 338 | + ], |
| 339 | + "source": [ |
| 340 | + "df.isnull().sum()" |
| 341 | + ] |
| 342 | + }, |
| 343 | + { |
| 344 | + "cell_type": "code", |
| 345 | + "execution_count": null, |
| 346 | + "metadata": {}, |
| 347 | + "outputs": [], |
| 348 | + "source": [] |
| 349 | + } |
| 350 | + ], |
| 351 | + "metadata": { |
| 352 | + "kernelspec": { |
| 353 | + "display_name": "Python 3", |
| 354 | + "language": "python", |
| 355 | + "name": "python3" |
| 356 | + }, |
| 357 | + "language_info": { |
| 358 | + "codemirror_mode": { |
| 359 | + "name": "ipython", |
| 360 | + "version": 3 |
| 361 | + }, |
| 362 | + "file_extension": ".py", |
| 363 | + "mimetype": "text/x-python", |
| 364 | + "name": "python", |
| 365 | + "nbconvert_exporter": "python", |
| 366 | + "pygments_lexer": "ipython3", |
| 367 | + "version": "3.6.7" |
| 368 | + } |
| 369 | + }, |
| 370 | + "nbformat": 4, |
| 371 | + "nbformat_minor": 2 |
| 372 | +} |
0 commit comments