forked from llvm/torch-mlir
-
Notifications
You must be signed in to change notification settings - Fork 1
/
setup.py
158 lines (138 loc) · 6.29 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
# Script for generating the torch-mlir wheel.
# ```
# $ python setup.py bdist_wheel
# ```
#
# It is recommended to build with Ninja and ccache. To do so, set environment
# variables by prefixing to above invocations:
# ```
# CMAKE_GENERATOR=Ninja CMAKE_C_COMPILER_LAUNCHER=ccache CMAKE_CXX_COMPILER_LAUNCHER=ccache
# ```
#
# On CIs, it is often advantageous to re-use/control the CMake build directory.
# This can be set with the TORCH_MLIR_CMAKE_BUILD_DIR env var.
# Additionally, the TORCH_MLIR_CMAKE_BUILD_DIR_ALREADY_BUILT env var will
# prevent this script from attempting to build the directory, and will simply
# use the (presumed already built) directory as-is.
#
# The package version can be set with the TORCH_MLIR_PYTHON_PACKAGE_VERSION
# environment variable. For example, this can be "20220330.357" for a snapshot
# release on 2022-03-30 with build number 357.
#
# Implementation notes:
# The contents of the wheel is just the contents of the `python_packages`
# directory that our CMake build produces. We go through quite a bit of effort
# on the CMake side to organize that directory already, so we avoid duplicating
# that here, and just package up its contents.
import os
import shutil
import subprocess
import sys
import sysconfig
from distutils.command.build import build as _build
from distutils.sysconfig import get_python_inc
from setuptools import setup, Extension
from setuptools.command.build_ext import build_ext
from setuptools.command.build_py import build_py
import torch
PACKAGE_VERSION = os.environ.get("TORCH_MLIR_PYTHON_PACKAGE_VERSION") or "0.0.1"
# Build phase discovery is unreliable. Just tell it what phases to run.
class CustomBuild(_build):
def run(self):
self.run_command("build_py")
self.run_command("build_ext")
self.run_command("build_scripts")
class CMakeBuild(build_py):
def run(self):
target_dir = self.build_lib
cmake_build_dir = os.getenv("TORCH_MLIR_CMAKE_BUILD_DIR")
if not cmake_build_dir:
cmake_build_dir = os.path.abspath(
os.path.join(target_dir, "..", "cmake_build"))
python_package_dir = os.path.join(cmake_build_dir,
"tools", "torch-mlir", "python_packages",
"torch_mlir")
if not os.getenv("TORCH_MLIR_CMAKE_BUILD_DIR_ALREADY_BUILT"):
src_dir = os.path.abspath(os.path.dirname(__file__))
llvm_dir = os.path.join(
src_dir, "externals", "llvm-project", "llvm")
cmake_args = [
f"-DCMAKE_BUILD_TYPE=Release",
f"-DPython3_EXECUTABLE={sys.executable}",
f"-DLLVM_TARGETS_TO_BUILD=host",
f"-DMLIR_ENABLE_BINDINGS_PYTHON=ON",
f"-DLLVM_ENABLE_PROJECTS=mlir",
f"-DLLVM_EXTERNAL_PROJECTS=torch-mlir;torch-mlir-dialects",
f"-DLLVM_EXTERNAL_TORCH_MLIR_SOURCE_DIR={src_dir}",
f"-DLLVM_EXTERNAL_TORCH_MLIR_DIALECTS_SOURCE_DIR={src_dir}/externals/llvm-external-projects/torch-mlir-dialects",
# Optimization options for building wheels.
f"-DCMAKE_VISIBILITY_INLINES_HIDDEN=ON",
f"-DCMAKE_C_VISIBILITY_PRESET=hidden",
f"-DCMAKE_CXX_VISIBILITY_PRESET=hidden",
f"-DTORCH_MLIR_ENABLE_LTC={'ON' if int(os.environ.get('TORCH_MLIR_ENABLE_LTC', 1)) else 'OFF'}",
]
os.makedirs(cmake_build_dir, exist_ok=True)
cmake_cache_file = os.path.join(cmake_build_dir, "CMakeCache.txt")
if os.path.exists(cmake_cache_file):
os.remove(cmake_cache_file)
# NOTE: With repeated builds for different Python versions, the
# prior version binaries will continue to accumulate. IREE uses
# a separate install step and cleans the install directory to
# keep this from happening. That is the most robust. Here we just
# delete the directory where we build native extensions to keep
# this from happening but still take advantage of most of the
# build cache.
mlir_libs_dir = os.path.join(python_package_dir, "torch_mlir", "_mlir_libs")
if os.path.exists(mlir_libs_dir):
print(f"Removing _mlir_mlibs dir to force rebuild: {mlir_libs_dir}")
shutil.rmtree(mlir_libs_dir)
else:
print(f"Not removing _mlir_libs dir (does not exist): {mlir_libs_dir}")
subprocess.check_call(["cmake", llvm_dir] +
cmake_args, cwd=cmake_build_dir)
subprocess.check_call(["cmake",
"--build", ".",
"--target", "TorchMLIRPythonModules"],
cwd=cmake_build_dir)
if os.path.exists(target_dir):
shutil.rmtree(target_dir, ignore_errors=False, onerror=None)
shutil.copytree(python_package_dir,
target_dir,
symlinks=False)
class CMakeExtension(Extension):
def __init__(self, name, sourcedir=""):
Extension.__init__(self, name, sources=[])
self.sourcedir = os.path.abspath(sourcedir)
class NoopBuildExtension(build_ext):
def build_extension(self, ext):
pass
setup(
name="torch-mlir",
version=f"{PACKAGE_VERSION}",
author="Sean Silva",
author_email="silvasean@google.com",
description="First-class interop between PyTorch and MLIR",
long_description="",
include_package_data=True,
cmdclass={
"build": CustomBuild,
"built_ext": NoopBuildExtension,
"build_py": CMakeBuild,
},
ext_modules=[
CMakeExtension("torch_mlir._mlir_libs._jit_ir_importer"),
],
install_requires=[
"numpy",
# To avoid issues with drift for each nightly build, we pin to the
# exact version we built against.
# TODO: This includes the +cpu specifier which is overly
# restrictive and a bit unfortunate.
f"torch=={torch.__version__}",
],
zip_safe=False,
)