forked from tensorflow/hub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor_info.py
276 lines (224 loc) · 9.1 KB
/
tensor_info.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# Copyright 2018 The TensorFlow Hub Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""TensorFlow Hub internal utilities to handle information about tensors.
This file provides utilities to refer to properties of un-instantiated Tensors
in a concise way. Note: Ideally TensorFlow would provide a way to do this.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
class ParsedTensorInfo(object):
"""This is a tensor-looking object with information about a Tensor.
This class provides a subset of methods and attributes provided by real
instantiated Tensor/SparseTensors in a graph such that code designed to
handle instances of it would mostly work in real Tensors.
"""
def __init__(self, dtype, shape, is_sparse):
self._dtype = dtype
self._shape = shape
self._is_sparse = is_sparse
@property
def dtype(self):
"""The `DType` of elements in this tensor."""
return self._dtype
def get_shape(self):
"""The `TensorShape` that represents the dense shape of this tensor."""
return self._shape
@property
def is_sparse(self):
"""Whether it represents a sparse tensor."""
# This property is non-standard and does not exist in tf.Tensor or
# tf.SparseTensor instances.
return self._is_sparse
def __repr__(self):
return "<hub.ParsedTensorInfo shape=%s dtype=%s is_sparse=%s>" % (
self.get_shape(),
self.dtype.name,
self.is_sparse)
def _parse_tensor_info_proto(tensor_info):
"""Returns a ParsedTensorInfo instance from a TensorInfo proto."""
encoding = tensor_info.WhichOneof("encoding")
dtype = tf.DType(tensor_info.dtype)
shape = tf.TensorShape(tensor_info.tensor_shape)
if encoding == "name":
return ParsedTensorInfo(dtype=dtype, shape=shape, is_sparse=False)
elif encoding == "coo_sparse":
return ParsedTensorInfo(dtype=dtype, shape=shape, is_sparse=True)
else:
raise ValueError("Unsupported TensorInfo encoding %r" % encoding)
def parse_tensor_info_map(protomap):
"""Converts a proto map<string, TensorInfo> into a native Python dict.
The keys are preserved. The TensorInfo protos are parsed into objects
with dtype property and get_shape() method similar to Tensor and SparseTensor
objects and an additional `is_sparse` property.
Args:
protomap: A proto map<string, TensorInfo>.
Returns:
A map from the original keys to python objects.
"""
return {
key: _parse_tensor_info_proto(value)
for key, value in protomap.items()
}
def _is_sparse(x):
"""Returns whether x is a SparseTensor or a parsed sparse tensor info."""
return (
isinstance(x, (tf.SparseTensor, tf.SparseTensorValue)) or
(hasattr(x, "is_sparse") and x.is_sparse))
def _convert_to_compatible_tensor(value, target, error_prefix):
"""Converts `value` into a tensor that can be feed into `tensor_info`.
Args:
value: A value to convert into Tensor or SparseTensor.
target: An object returned by `parse_tensor_info_map`.
error_prefix: A string to prefix on raised TypeErrors.
Raises:
TypeError: If it fails to convert.
Returns:
A Tensor or SparseTensor compatible with tensor_info.
"""
try:
tensor = tf.convert_to_tensor_or_indexed_slices(value, target.dtype)
except TypeError as e:
raise TypeError("%s: %s" % (error_prefix, e))
if _is_sparse(tensor) != _is_sparse(target):
if _is_sparse(tensor):
raise TypeError("%s: Is sparse. Expected dense." % error_prefix)
else:
raise TypeError("%s: Is dense. Expected sparse." % error_prefix)
if not tensor.get_shape().is_compatible_with(target.get_shape()):
raise TypeError("%s: Shape %r is incompatible with %r" %
(error_prefix, tensor.get_shape(), target.get_shape()))
return tensor
def convert_to_input_tensors(protomap, values):
"""Converts `values` into tensors that can be fed into `protomap`.
Args:
protomap: A proto map<string,TensorInfo>.
values: A map with same keys as `protomap` with objects to convert.
Returns:
A map with same keys as `values` but values converted into
Tensors/SparseTensors that can be fed into `protomap`.
Raises:
TypeError: If it fails to convert.
"""
targets = parse_tensor_info_map(protomap)
return make_compatible_dict(values, targets)
def make_compatible_dict(values, targets):
"""Converts dict `values` in tensors that are compatible with `targets`.
Args:
values: A dict to objects to convert with same keys as `targets`.
targets: A dict returned by `parse_tensor_info_map`.
Returns:
A map with the same keys as `values` but values converted into
Tensor/SparseTensors that can be fed into `protomap`.
Raises:
TypeError: If it fails to convert.
"""
values_keys = set(values.keys())
targets_keys = set(targets.keys())
if values_keys != targets_keys:
raise TypeError("Cannot convert values: missing %r, extra given %r" %
(sorted(list(targets_keys - values_keys)),
sorted(list(values_keys - targets_keys))))
result = {}
for key, value in sorted(values.items()):
result[key] = _convert_to_compatible_tensor(
value, targets[key], error_prefix="Can't convert %r" % key)
return result
def build_input_map(protomap, inputs):
"""Builds a map to feed tensors in `protomap` using `inputs`.
Args:
protomap: A proto map<string,TensorInfo>.
inputs: A map with same keys as `protomap` of Tensors and SparseTensors.
Returns:
A map from nodes refered by TensorInfo protos to corresponding input
tensors.
Raises:
ValueError: if a TensorInfo proto is malformed or map keys do not match.
"""
if set(protomap.keys()) != set(inputs.keys()):
raise ValueError("build_input_map: keys do not match.")
input_map = {}
for key, tensor_info in protomap.items():
arg = inputs[key]
encoding = tensor_info.WhichOneof("encoding")
if encoding == "name":
input_map[tensor_info.name] = arg
elif encoding == "coo_sparse":
coo_sparse = tensor_info.coo_sparse
input_map[coo_sparse.values_tensor_name] = arg.values
input_map[coo_sparse.indices_tensor_name] = arg.indices
input_map[coo_sparse.dense_shape_tensor_name] = arg.dense_shape
else:
raise ValueError("Invalid TensorInfo.encoding: %s" % encoding)
return input_map
def build_output_map(protomap, get_tensor_by_name):
"""Builds a map of tensors from `protomap` using `get_tensor_by_name`.
Args:
protomap: A proto map<string,TensorInfo>.
get_tensor_by_name: A lambda that receives a tensor name and returns a
Tensor instance.
Returns:
A map from string to Tensor or SparseTensor instances built from `protomap`
and resolving tensors using `get_tensor_by_name()`.
Raises:
ValueError: if a TensorInfo proto is malformed.
"""
def get_output_from_tensor_info(tensor_info):
encoding = tensor_info.WhichOneof("encoding")
if encoding == "name":
return get_tensor_by_name(tensor_info.name)
elif encoding == "coo_sparse":
return tf.SparseTensor(
get_tensor_by_name(tensor_info.coo_sparse.indices_tensor_name),
get_tensor_by_name(tensor_info.coo_sparse.values_tensor_name),
get_tensor_by_name(tensor_info.coo_sparse.dense_shape_tensor_name))
else:
raise ValueError("Invalid TensorInfo.encoding: %s" % encoding)
return {
key: get_output_from_tensor_info(tensor_info)
for key, tensor_info in protomap.items()
}
def _shape_match(a, b):
# TRICKY: as_list() can't be used if the number of dimensions is unknown.
# So we check those before.
if a.ndims != b.ndims:
return False
if a.ndims and a.as_list() != b.as_list():
return False
return True
def tensor_info_proto_maps_match(map_a, map_b):
"""Whether two signature inputs/outputs match in dtype, shape and sparsity.
Args:
map_a: A proto map<string,TensorInfo>.
map_b: A proto map<string,TensorInfo>.
Returns:
A boolean whether `map_a` and `map_b` tensors have the same dtype, shape and
sparsity.
"""
iter_a = sorted(parse_tensor_info_map(map_a).items())
iter_b = sorted(parse_tensor_info_map(map_b).items())
if len(iter_a) != len(iter_b):
return False # Mismatch count.
for info_a, info_b in zip(iter_a, iter_b):
if info_a[0] != info_b[0]:
return False # Mismatch keys.
if _is_sparse(info_a[1]) != _is_sparse(info_b[1]):
return False
if info_a[1].dtype != info_b[1].dtype:
return False
if not _shape_match(info_a[1].get_shape(), info_b[1].get_shape()):
return False
return True