-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
46 lines (36 loc) · 1.27 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""ANIMESH BALA ANI"""
# Import Modules
import torch
import torch.nn.functional as F
import torchvision
from torchvision.utils import save_image
from skimage import io
import albumentations as A
from albumentations.pytorch import ToTensorV2
from generator import Generator
# Global Variables
IMG_PATH = 'sample/sample6.jpg'
OUTPUT_IMG_PATH = 'sample/output_sample6.jpg'
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
CHECKPOINT_GEN = "checkpoint/gen.pth.tar"
# Transformation
transform = A.Compose([
A.Resize(height=512, width=512),
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255.0,),
ToTensorV2(),])
# Load Image
image = io.imread(IMG_PATH)
height, width, channel = image.shape
image = transform(image=image)["image"]
image = image.unsqueeze(0)
# Load Model
model_gen = Generator(in_channels=3).to(DEVICE)
model_gen.load_state_dict(torch.load(CHECKPOINT_GEN, map_location=DEVICE)["state_dict"])
model_gen.eval()
# Generate Output
output_image = model_gen(image.to(DEVICE))
output_image = F.interpolate(output_image, size=(height, width), mode='bicubic', align_corners=False)
output_image = torchvision.utils.make_grid(output_image, normalize=True)
save_image(output_image, OUTPUT_IMG_PATH)