forked from aalhour/C-Sharp-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDirectedSparseGraph.cs
360 lines (294 loc) · 10.5 KB
/
DirectedSparseGraph.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/***
* The Directed Sparse Graph Data Structure.
*
* Definition:
* A sparse graph is a graph G = (V, E) in which |E| = O(|V|).
* A directed graph is a graph where each edge follow one direction only between any two vertices.
*
* An adjacency-list digraph (directed-graph) representation.
* Implements the IGraph<T> interface.
*/
using System;
using System.Collections.Generic;
using DataStructures.Lists;
namespace DataStructures.Graphs
{
public class DirectedSparseGraph<T> : IGraph<T> where T : IComparable<T>
{
/// <summary>
/// INSTANCE VARIABLES
/// </summary>
protected virtual int _edgesCount { get; set; }
protected virtual T _firstInsertedNode { get; set; }
protected virtual Dictionary<T, DLinkedList<T>> _adjacencyList { get; set; }
/// <summary>
/// CONSTRUCTOR
/// </summary>
public DirectedSparseGraph() : this(10) { }
public DirectedSparseGraph(uint initialCapacity)
{
_edgesCount = 0;
_adjacencyList = new Dictionary<T, DLinkedList<T>>((int)initialCapacity);
}
/// <summary>
/// Helper function. Checks if edge exist in graph.
/// </summary>
protected virtual bool _doesEdgeExist(T vertex1, T vertex2)
{
return (_adjacencyList[vertex1].Contains(vertex2));
}
/// <summary>
/// Returns true, if graph is directed; false otherwise.
/// </summary>
public virtual bool IsDirected
{
get { return true; }
}
/// <summary>
/// Returns true, if graph is weighted; false otherwise.
/// </summary>
public virtual bool IsWeighted
{
get { return false; }
}
/// <summary>
/// Gets the count of vetices.
/// </summary>
public virtual int VerticesCount
{
get { return _adjacencyList.Count; }
}
/// <summary>
/// Gets the count of edges.
/// </summary>
public virtual int EdgesCount
{
get { return _edgesCount; }
}
/// <summary>
/// Returns the list of Vertices.
/// </summary>
public virtual IEnumerable<T> Vertices
{
get
{
foreach (var vertex in _adjacencyList)
yield return vertex.Key;
}
}
/// <summary>
/// Connects two vertices together in the direction: first->second.
/// </summary>
public virtual bool AddEdge(T source, T destination)
{
// Check existence of nodes and non-existence of edge
if (!HasVertex(source) || !HasVertex(destination))
return false;
else if (_doesEdgeExist(source, destination))
return false;
// Add edge from source to destination
_adjacencyList[source].Append(destination);
// Increment edges count
++_edgesCount;
return true;
}
/// <summary>
/// Removes edge, if exists, from source to destination.
/// </summary>
public virtual bool RemoveEdge(T source, T destination)
{
// Check existence of nodes and non-existence of edge
if (!HasVertex(source) || !HasVertex(destination))
return false;
else if (!_doesEdgeExist(source, destination))
return false;
// Remove edge from source to destination
_adjacencyList[source].Remove(destination);
// Decrement the edges count
--_edgesCount;
return true;
}
/// <summary>
/// Add a collection of vertices to the graph.
/// </summary>
public virtual void AddVertices(IList<T> collection)
{
if (collection == null)
throw new ArgumentNullException();
foreach (var vertex in collection)
AddVertex(vertex);
}
/// <summary>
/// Add vertex to the graph
/// </summary>
public virtual bool AddVertex(T vertex)
{
if (HasVertex(vertex))
return false;
if (_adjacencyList.Count == 0)
_firstInsertedNode = vertex;
_adjacencyList.Add(vertex, new DLinkedList<T>());
return true;
}
/// <summary>
/// Removes the specified vertex from graph.
/// </summary>
public virtual bool RemoveVertex(T vertex)
{
// Check existence of vertex
if (!HasVertex(vertex))
return false;
// Subtract the number of edges for this vertex from the total edges count
_edgesCount = _edgesCount - _adjacencyList[vertex].Count;
// Remove vertex from graph
_adjacencyList.Remove(vertex);
// Remove destination edges to this vertex
foreach (var adjacent in _adjacencyList)
{
if (adjacent.Value.Contains(vertex))
{
adjacent.Value.Remove(vertex);
// Decrement the edges count.
--_edgesCount;
}
}
return true;
}
/// <summary>
/// Checks whether there is an edge from source to destination.
/// </summary>
public virtual bool HasEdge(T source, T destination)
{
return (_adjacencyList.ContainsKey(source) && _adjacencyList.ContainsKey(destination) && _doesEdgeExist(source, destination));
}
/// <summary>
/// Checks whether a vertex exists in the graph
/// </summary>
public virtual bool HasVertex(T vertex)
{
return _adjacencyList.ContainsKey(vertex);
}
/// <summary>
/// Returns the neighbours doubly-linked list for the specified vertex.
/// </summary>
public virtual DLinkedList<T> Neighbours(T vertex)
{
if (!HasVertex(vertex))
return null;
return _adjacencyList[vertex];
}
/// <summary>
/// Returns the degree of the specified vertex.
/// </summary>
public virtual int Degree(T vertex)
{
if (!HasVertex(vertex))
throw new KeyNotFoundException();
return _adjacencyList[vertex].Count;
}
/// <summary>
/// Returns a human-readable string of the graph.
/// </summary>
public virtual string ToReadable()
{
string output = string.Empty;
foreach (var node in _adjacencyList)
{
var adjacents = string.Empty;
output = String.Format("{0}\r\n{1}: [", output, node.Key);
foreach (var adjacentNode in node.Value)
adjacents = String.Format("{0}{1},", adjacents, adjacentNode);
if (adjacents.Length > 0)
adjacents = adjacents.TrimEnd(new char[] { ',', ' ' });
output = String.Format("{0}{1}]", output, adjacents);
}
return output;
}
/// <summary>
/// A depth first search traversal of the graph starting from the first inserted node.
/// Returns the visited vertices of the graph.
/// </summary>
public virtual IEnumerable<T> DepthFirstWalk()
{
return DepthFirstWalk(_firstInsertedNode);
}
/// <summary>
/// A depth first search traversal of the graph, starting from a specified vertex.
/// Returns the visited vertices of the graph.
/// </summary>
public virtual IEnumerable<T> DepthFirstWalk(T source)
{
// Check for existence of source
if (VerticesCount == 0)
return new ArrayList<T>(0);
else if (!HasVertex(source))
throw new KeyNotFoundException("The source vertex doesn't exist.");
var visited = new HashSet<T>();
var stack = new DataStructures.Lists.Stack<T>();
var listOfNodes = new ArrayList<T>(VerticesCount);
stack.Push(source);
while (!stack.IsEmpty)
{
var current = stack.Pop();
if (!visited.Contains(current))
{
listOfNodes.Add(current);
visited.Add(current);
foreach (var adjacent in Neighbours(current))
if (!visited.Contains(adjacent))
stack.Push(adjacent);
}
}
return listOfNodes;
}
/// <summary>
/// A breadth first search traversal of the graphstarting from the first inserted node.
/// Returns the visited vertices of the graph.
/// </summary>
public virtual IEnumerable<T> BreadthFirstWalk()
{
return BreadthFirstWalk(_firstInsertedNode);
}
/// <summary>
/// A breadth first search traversal of the graph, starting from a specified vertex.
/// Returns the visited vertices of the graph.
/// </summary>
public virtual IEnumerable<T> BreadthFirstWalk(T source)
{
// Check for existence of source
if (VerticesCount == 0)
return new ArrayList<T>(0);
else if (!HasVertex(source))
throw new KeyNotFoundException("The source vertex doesn't exist.");
var visited = new HashSet<T>();
var queue = new DataStructures.Lists.Queue<T>();
var listOfNodes = new ArrayList<T>(VerticesCount);
listOfNodes.Add(source);
visited.Add(source);
queue.Enqueue(source);
while (!queue.IsEmpty)
{
var current = queue.Dequeue();
var neighbors = Neighbours(current);
foreach (var adjacent in neighbors)
{
if (!visited.Contains(adjacent))
{
listOfNodes.Add(adjacent);
visited.Add(adjacent);
queue.Enqueue(adjacent);
}
}
}
return listOfNodes;
}
/// <summary>
/// Clear this graph.
/// </summary>
public virtual void Clear()
{
_edgesCount = 0;
_adjacencyList.Clear();
}
}
}