forked from aalhour/C-Sharp-Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCliqueGraph.cs
851 lines (738 loc) · 26.5 KB
/
CliqueGraph.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
using System;
using System.Collections.Generic;
using DataStructures.Graphs;
using DataStructures.Lists;
namespace DataStructures.Graphs
{
/// <summary>
/// Represents a unweighted underected graph, modeling with a set of its maximal complete subgraphs of it.
/// Should be fast in clustered graphs
/// </summary>
public class CliqueGraph<T> : IGraph<T> where T : IComparable<T>, IEquatable<T>
{
public class Clique : HashSet<T>, IComparable<Clique>
{
public Clique()
: base()
{
}
public Clique(ISet<T> elements)
: base(elements)
{
}
#region IComparable implementation
int IComparable<Clique>.CompareTo(Clique other)
{
throw new NotImplementedException();
}
#endregion
public override string ToString()
{
string ret = "{";
foreach (var x in this)
{
ret += x.ToString() + " ";
}
ret += "}";
return ret;
}
}
#region Model
/// <summary>
/// Vertices of the graph.
/// </summary>
ICollection<T> _vertices = new HashSet<T>();
/// <summary>
/// A set of cliques minimal with the hability of charaterize the graph.
/// </summary>
ISet<Clique> _cliques = new HashSet<Clique>();
#endregion
#region Constructors
public CliqueGraph()
{
}
/// <summary>
/// Initializes a new instance of the <see cref="DataStructures.Graphs.CliqueGraph`1"/> class.
/// Copies the model from another graph.
/// </summary>
/// <param name="graph">Graph.</param>
public CliqueGraph(IGraph<T> graph)
: this(graph.Vertices)
{
foreach (var startVert in Vertices)
{
foreach (var endVert in graph.Neighbours(startVert))
{
if (!HasEdge(startVert, endVert))
{
// Add vortex
Clique newClan = new Clique();
newClan.Add(startVert);
newClan.Add(endVert);
ExpandToMaximal(graph, newClan);
_cliques.Add(newClan);
}
}
}
}
/// <summary>
/// Initializes a new instance of the <see cref="DataStructures.Graphs.CliqueGraph`1"/> class.
/// </summary>
/// <param name="vertices">Initial vertices of the graph</param>
public CliqueGraph(IEnumerable<T> vertices)
: this()
{
if (vertices == null)
{
System.Diagnostics.Debug.WriteLine("Cannot initialize an instance of a CliqueGraph with NULL vertices;\ninvoking default constructor.");
}
else
{
AddVertices(vertices);
}
}
#endregion
#region Internal
/// <summary>
/// Determines if a set of vertices is complete as a subgraph of this
/// </summary>
/// <returns><c>true</c>, if the set is a complete subgraph, <c>false</c> otherwise.</returns>
/// <param name="vertices">A set of vertices of this graph.</param>
public bool IsComplete(ISet<T> vertices)
{
if (!vertices.IsSubsetOf(_vertices))
throw new Exception("The param in CliqueGraph.IsComplete should be a subset of Vertices");
/*
* vertices is complete iff [vertices]² \subseteq \bigcup_{c \in cliques} [c]²
* where [x]² is the set of all subsets of x of cardinality 2.
*/
ISet<UnordererPair<T>> H = getPairs(vertices);
foreach (var clan in _cliques)
{
ISet<UnordererPair<T>> exc = getPairs(clan);
H.ExceptWith(exc);
}
return H.Count == 0;
}
/// <summary>
/// Determines if a set of vertices is complete as a subgraph of another graph
/// </summary>
/// <returns><c>true</c>, if the set is a complete subgraph, <c>false</c> otherwise.</returns>
/// <param name="graph">A graph to determine 'completness'</param>
/// <param name="vertices">A set of vertices of graph.</param>
static bool IsComplete(IGraph<T> graph, ISet<T> vertices)
{
foreach (var x in vertices)
{
foreach (var y in vertices)
{
if (!graph.HasEdge(x, y))
return false;
}
}
return true;
}
/// <summary>
/// Expands a clique to a maximal complete
/// </summary>
/// <param name="clan">Clique to expand</param>
void ExpandToMaximal(Clique clan)
{
Clique maximalityChecker; // Temporal clique for checking maximality
// Expand NewClique to a maximal complete subgraph
foreach (var z in Vertices)
{
if (!clan.Contains(z))
{
maximalityChecker = new Clique(clan);
maximalityChecker.Add(z);
if (IsComplete(maximalityChecker))
clan.Add(z);
}
}
// Destroy every no maximal elements of the graph
HashSet<Clique> clone = new HashSet<Clique>(_cliques);
clone.Remove(clan);
foreach (var c in clone) // Iterate over a clone of _cliques
{
if (clan.IsSupersetOf(c))
_cliques.Remove(c);
}
}
/// <summary>
/// Expands a clique to a maximal complete in a given graph
/// </summary>
/// <param name="graph">Graph to use to determine maximality.</param>
/// <param name="clan">Clique to expand.</param>
static void ExpandToMaximal(IGraph<T> graph, Clique clan)
{
Clique tempo; // Temporal clique for checking maximality
// Expand NewClique to a maximal complete subgraph
foreach (var z in graph.Vertices)
{
if (!clan.Contains(z))
{
tempo = new Clique(clan);
tempo.Add(z);
if (IsComplete(graph, tempo))
clan.Add(z);
}
}
}
/// <summary>
/// Some (temporary) class to compare unorderer pairs.
/// </summary>
class PairComparer : IEqualityComparer<UnordererPair<T>>
{
#region IEqualityComparer implementation
bool IEqualityComparer<UnordererPair<T>>.Equals(UnordererPair<T> x, UnordererPair<T> y)
{
return ((IEquatable<UnordererPair<T>>)x).Equals(y);
}
int IEqualityComparer<UnordererPair<T>>.GetHashCode(UnordererPair<T> obj)
{
return obj.Item1.GetHashCode() + obj.Item2.GetHashCode();
}
#endregion
}
/// <summary>
/// Return the subsets of cardinality 2 of a given collection. ie [vertices]².
/// </summary>
/// <returns>Returns an ISet whose elements are every subset of a given set of cardinality 2.</returns>
/// <param name="vertices">Collection whose pairs are going to be returned.</param>
ISet<UnordererPair<T>> getPairs(ICollection<T> vertices)
{
T[] arr = new T[vertices.Count];
ISet<UnordererPair<T>> ret = new System.Collections.Generic.HashSet<UnordererPair<T>>(new PairComparer());
vertices.CopyTo(arr, 0);
for (int i = 0; i < vertices.Count; i++)
{
for (int j = i + 1; j < vertices.Count; j++)
{
ret.Add(new UnordererPair<T>(arr[i], arr[j]));
}
}
return ret;
}
#endregion
#region IGraph implementation
/// <summary>
/// An enumerable collection of all graph edges.
/// </summary>
public IEnumerable<IEdge<T>> Edges
{
get
{
List<UnweightedEdge<T>> returnEdges = new List<UnweightedEdge<T>>();
foreach (var edge in getEdges())
{
returnEdges.Add(new UnweightedEdge<T>(edge.Item1, edge.Item2));
returnEdges.Add(new UnweightedEdge<T>(edge.Item2, edge.Item1));
}
return returnEdges;
}
}
/// <summary>
/// Get all incoming edges to vertex.
/// </summary>
public IEnumerable<IEdge<T>> IncomingEdges(T vertex)
{
List<UnweightedEdge<T>> incomingEdges = new List<UnweightedEdge<T>>();
foreach (var c in _cliques)
{
if (c.Contains(vertex))
{
foreach (var item in c)
{
if (!incomingEdges.Exists(x => x.Source.Equals(item)))
incomingEdges.Add(new UnweightedEdge<T>(item, vertex));
}
}
}
return incomingEdges;
}
/// <summary>
/// Get all outgoing edges from a vertex.
/// </summary>
public IEnumerable<IEdge<T>> OutgoingEdges(T vertex)
{
List<UnweightedEdge<T>> outgoingEdges = new List<UnweightedEdge<T>>();
foreach (var c in _cliques)
{
if (c.Contains(vertex))
{
foreach (var item in c)
{
if (!outgoingEdges.Exists(x => x.Destination.Equals(item)))
outgoingEdges.Add(new UnweightedEdge<T>(vertex, item));
}
}
}
return outgoingEdges;
}
/// <summary>
/// Connects two vertices together.
/// </summary>
/// <returns><c>true</c>, if edge was added, <c>false</c> otherwise.</returns>
/// <param name="firstVertex">First vertex.</param>
/// <param name="secondVertex">Second vertex.</param>
public bool AddEdge(T firstVertex, T secondVertex)
{
if (HasEdge(firstVertex, secondVertex))
return false;
Clique NewClique = new Clique(); // The new clique that contains the edge (firstVertex, secondVertex)
_cliques.Add(NewClique);
_vertices.Add(firstVertex);
_vertices.Add(secondVertex);
NewClique.Add(firstVertex);
NewClique.Add(secondVertex);
ExpandToMaximal(NewClique);
return true;
}
/// <summary>
/// Deletes an edge, if exists, between two vertices.
/// </summary>
/// <returns><c>true</c>, if edge was removed, <c>false</c> otherwise.</returns>
/// <param name="firstVertex">First vertex.</param>
/// <param name="secondVertex">Second vertex.</param>
public bool RemoveEdge(T firstVertex, T secondVertex)
{
bool ret = false;
Clique splitting;
Clique removing = new Clique();
removing.Add(firstVertex);
removing.Add(secondVertex);
foreach (var clan in new HashSet<Clique>(_cliques)) //Iterating over a clone of cliques
{
if (clan.IsSupersetOf(removing))
{
// clan should be eliminated from cliques and replaced by maximal refinements
_cliques.Remove(clan);
splitting = new Clique(clan);
splitting.Remove(firstVertex);
_cliques.Add(splitting);
ExpandToMaximal(splitting);
splitting = new Clique(clan);
splitting.Remove(secondVertex);
_cliques.Add(splitting);
ExpandToMaximal(splitting);
ret = true; // return true when finished
}
}
return ret;
}
/// <summary>
/// Adds a list of vertices to the graph.
/// </summary>
/// <param name="collection">Collection.</param>
public void AddVertices(IEnumerable<T> collection)
{
if (collection == null)
throw new ArgumentException();
foreach (var vertex in collection)
{
AddVertex(vertex);
}
}
/// <summary>
/// Adds a list of vertices to the graph.
/// </summary>
/// <param name="collection">Collection.</param>
void IGraph<T>.AddVertices(IList<T> collection)
{
AddVertices(collection);
}
/// <summary>
/// Adds a new vertex to graph.
/// </summary>
/// <returns><c>true</c>, if vertex was added, <c>false</c> otherwise.</returns>
/// <param name="vertex">Vertex.</param>
public bool AddVertex(T vertex)
{
bool ret = !_vertices.Contains(vertex);
_vertices.Add(vertex);
return ret;
}
/// <summary>
/// Removes the specified vertex from graph.
/// </summary>
/// <returns><c>true</c>, if vertex was removed, <c>false</c> otherwise.</returns>
/// <param name="vertex">Vertex.</param>
public bool RemoveVertex(T vertex)
{
// Remove vertex from set of vertices, return false if nothing was removed.
if (!_vertices.Remove(vertex))
return false;
// Make the cliques consistent
foreach (var clan in new HashSet<Clique>(_cliques)) // clone _cliques and iterate
{
if (clan.Remove(vertex))
{
// if clan was exhausted, remove it;
if (clan.Count <= 1)
{
_cliques.Remove(clan);
}
else // else make it maximal
{
ExpandToMaximal(clan);
}
}
}
return true;
}
/// <summary>
/// Determines whether this instance has edge the specified firstVertex secondVertex.
/// </summary>
/// <returns><c>true</c> if this instance has edge the specified firstVertex secondVertex; otherwise, <c>false</c>.</returns>
/// <param name="firstVertex">First vertex.</param>
/// <param name="secondVertex">Second vertex.</param>
public bool HasEdge(T firstVertex, T secondVertex)
{
ISet<T> edge = new HashSet<T>();
edge.Add(firstVertex);
edge.Add(secondVertex);
// If [edge]² (= edge) is contained in some clan, there is an edge.
foreach (var clan in _cliques)
{
if (clan.IsSupersetOf(edge))
return true;
}
return false;
}
/// <summary>
/// Determines whether this graph has the specified vertex.
/// </summary>
/// <returns><c>true</c> if this instance has vertex the specified vertex; otherwise, <c>false</c>.</returns>
/// <param name="vertex">Vertex.</param>
public bool HasVertex(T vertex)
{
return _vertices.Contains(vertex);
}
/// <summary>
/// Returns the neighbours doubly-linked list for the specified vertex.
/// </summary>
/// <param name="vertex">Vertex.</param>
public DataStructures.Lists.DLinkedList<T> Neighbours(T vertex)
{
DataStructures.Lists.DLinkedList<T> returnList = new DataStructures.Lists.DLinkedList<T>();
foreach (var c in _cliques)
{
if (c.Contains(vertex))
{
foreach (var item in c)
{
if (!returnList.Contains(item))
returnList.Append(item);
}
}
}
return returnList;
}
public int Degree(T vertex)
{
return Neighbours(vertex).Count;
}
public string ToReadable()
{
throw new NotImplementedException();
}
public IEnumerable<T> DepthFirstWalk()
{
throw new NotImplementedException();
}
public IEnumerable<T> DepthFirstWalk(T startingVertex)
{
throw new NotImplementedException();
}
public IEnumerable<T> BreadthFirstWalk()
{
throw new NotImplementedException();
}
public IEnumerable<T> BreadthFirstWalk(T startingVertex)
{
throw new NotImplementedException();
}
/// <summary>
/// Clear this graph.
/// </summary>
public void Clear()
{
_vertices.Clear();
_cliques.Clear();
}
/// <summary>
/// Returns true, if graph is directed; false otherwise.
/// </summary>
/// <value><c>true</c> if this instance is directed; otherwise, <c>false</c>.</value>
public bool IsDirected
{
get
{
return false;
}
}
/// <summary>
/// Returns true, if graph is weighted; false otherwise.
/// </summary>
/// <value><c>true</c> if this instance is weighted; otherwise, <c>false</c>.</value>
public bool IsWeighted
{
get
{
return false;
}
}
/// <summary>
/// Gets the count of vetices.
/// </summary>
/// <value>The vertices count.</value>
public int VerticesCount
{
get
{
return _vertices.Count;
}
}
public int EdgesCount
{
get
{
return getEdges().Count;
}
}
/// <summary>
/// Returns the list of edges.
/// </summary>
/// <returns></returns>
ICollection<UnordererPair<T>> getEdges()
{
ISet<UnordererPair<T>> H = new HashSet<UnordererPair<T>>();
foreach (var clan in _cliques)
{
ISet<UnordererPair<T>> union = getPairs(clan);
H.UnionWith(union);
}
return H;
}
/// <summary>
/// Returns the list of Vertices.
/// </summary>
/// <value>The vertices.</value>
IEnumerable<T> IGraph<T>.Vertices
{
get
{
return _vertices;
}
}
/// <summary>
/// Returns the list of Vertices.
/// </summary>
/// <value>The vertices.</value>
public ICollection<T> Vertices
{
get
{
return _vertices;
}
}
/// <summary>
/// Gets the cloud of a collection of vetices.
/// A cloud of a collection is the union if the neighborhoods of its elements
/// </summary>
/// <returns>The cloud.</returns>
/// <param name="collection">Collection.</param>
public ISet<T> GetCloud(ISet<T> collection)
{
_getCloud(collection, new HashSet<Clique>(_cliques));
return collection;
}
/// <summary>
/// Gets the cloud of a collection of vetices.
/// A cloud of a collection is the union if the neighborhoods of its elements
/// </summary>
/// <returns>The cloud.</returns>
/// <param name="collection">Collection.</param>
/// <param name="useCliques">A set of cliques to use</param>
private void _getCloud(ISet<T> cloud, ICollection<Clique> useCliques)
{
foreach (var clan in new HashSet<Clique>(useCliques))
{
if (cloud.Overlaps(clan))
{
cloud.UnionWith(clan);
useCliques.Remove(clan);
}
}
}
/// <summary>
/// Returns the conext component of a collection
/// </summary>
/// <returns>The component.</returns>
/// <param name="collection">Collection.</param>
private void _getComponentCollection(ISet<T> collection)
{
int count = 0;
ICollection<Clique> UnusedCliques = new HashSet<Clique>(_cliques);
while (count < collection.Count)
{
count = collection.Count;
_getCloud(collection, UnusedCliques);
}
}
/// <summary>
/// Returns the only connected component containing a given vertex.
/// </summary>
/// <returns>A collection containing the vertex of a connected component</returns>
/// <param name="vertex">Vertex.</param>
public ICollection<T> GetConnectedComponent(T vertex)
{
if (!_vertices.Contains(vertex))
throw new Exception("vertex should be a vertex of this graph.");
HashSet<T> component = new HashSet<T>();
component.Add(vertex);
_getComponentCollection(component);
return component;
}
#endregion
#region Clique invariants
/// <summary>
/// Returns the list of maximal cliques
/// </summary>
/// <value>The get cliques.</value>
public IReadOnlyCollection<Clique> getCliques
{
get
{
// TODO: getCliques, this does not return all the maximal cliques;
// only return enough of them.
return (IReadOnlyCollection<Clique>)_cliques;
}
}
/// <summary>
/// Returns the clique number of the current graph.
/// </summary>
/// <value>The clique number.</value>
public int cliqueNumber
{
get
{
return Pick<Clique>(getMaximumCliques).Count;
}
}
/// <summary>
/// Returns the collection of the maxium-sized cliques
/// </summary>
/// <value>The get maximum cliques.</value>
public IEnumerable<Clique> getMaximumCliques
{
get
{
int maxSize = 0;
ICollection<Clique> maxCliques = new HashSet<Clique>();
foreach (var clan in getCliques)
{
if (clan.Count > maxSize)
{
maxCliques.Clear();
maxSize = clan.Count;
}
if (clan.Count == maxSize)
{
maxCliques.Add(clan);
}
}
return maxCliques;
}
}
#endregion
#region Clique methods
/// <summary>
/// Determines if a set of vertices is complete as a subgraph of another graph
/// </summary>
/// <returns><c>true</c>, if the set is a complete subgraph, <c>false</c> otherwise.</returns>
/// <param name="certices">A set of vertices of graph.</param>
public bool isComplete(IEnumerable<T> vertices)
{
if (vertices == null)
throw new ArgumentException();
foreach (var x in _cliques)
{
if (x.IsSupersetOf(vertices))
return true;
}
return false;
}
/// <summary>
/// Builds the graph of cliques of this graph
/// </summary>
/// <returns>The dual graph.</returns>
public IGraph<Clique> buildDualGraph()
{
IGraph<Clique> dualGraph = new UndirectedDenseGraph<Clique>((uint)VerticesCount);
foreach (var clan in _cliques)
{
dualGraph.AddVertex(clan);
}
foreach (var clan0 in _cliques)
{
foreach (var clan1 in _cliques)
{
if (!clan0.Equals(clan1) && clan0.Overlaps(clan1)) // Equals = SetEquals here since cliques are maximal.
{
dualGraph.AddEdge(clan0, clan1);
}
}
}
return dualGraph;
}
/// <summary>
/// Given a path in a dual graph, it return a corresponding path in this graph
/// </summary>
/// <returns>An equivalent path of the clique path.</returns>
/// <param name="path">Path.</param>
public IEnumerable<T> ReturnPathFromCliquePath(IEnumerable<Clique> path)
{
ArrayList<T> returnPath = new ArrayList<T>();
IList<Clique> listPath = new List<Clique>(path);
ISet<T> intersection;
// Pick any element of each intersection
for (int i = 0; i < listPath.Count - 1; i++)
{
intersection = new HashSet<T>(listPath[i]);
intersection.IntersectWith(listPath[i + 1]); // intersection is never empty because 'path' should be a path in a dual graph.
returnPath.Add(CliqueGraph<T>.Pick(intersection));
}
return returnPath;
}
#endregion
/// <summary>
/// Picks any object in a ISet
/// </summary>
/// <param name="Set">Set.</param>
/// <typeparam name="V">The 1st type parameter.</typeparam>
static V Pick<V>(IEnumerable<V> Set)
{
IEnumerator<V> enumerator = ((IEnumerable<V>)Set).GetEnumerator();
V ret = enumerator.Current;
enumerator.Dispose();
return ret;
}
}
internal class UnordererPair<T> : Tuple<T, T>, IEquatable<UnordererPair<T>> where T : IEquatable<T>
{
public UnordererPair(T item0, T item1)
: base(item0, item1)
{
}
#region IEquatable implementation
bool IEquatable<UnordererPair<T>>.Equals(UnordererPair<T> other)
{
return
(Item1.Equals(other.Item1) && Item2.Equals(other.Item2)) ||
(Item1.Equals(other.Item2) && Item2.Equals(other.Item1));
}
#endregion
}
}