-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathFABUTIL_3D.F
738 lines (680 loc) · 28.5 KB
/
FABUTIL_3D.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
c ::: SCCS stuff "@(#)FABUTIL_3D.F 3.1\t6/25/93"
#define FORT_CINTERP cinterp3d
#define FORT_PCINTERP pcinterp3d
#define FORT_VCINTERP vcinterp3d
#define FORT_CARTGRIDMINMAX cartgridminmax3d
#include "REAL.H"
#include "CONSTANTS.H"
#define IX_PROJ(A,B) (A+B*iabs(A))/B-iabs(A)
c ::: --------------------------------------------------------------
subroutine FORT_CARTGRIDMINMAX (data, dlo1, dlo2, dlo3, dhi1, dhi2, dhi3,
$ vfracdata, vfeps, dmin, dmax)
implicit none
integer dlo1, dlo2, dlo3, dhi1, dhi2, dhi3
REAL_T data(dlo1:dhi1 ,dlo2:dhi2, dlo3:dhi3)
REAL_T vfracdata(dlo1:dhi1 ,dlo2:dhi2, dlo3:dhi3)
REAL_T vfeps, dmin, dmax
integer i, j, k
dmax = -bigreal
dmin = bigreal
do 410 k = dlo3, dhi3
do 420 j = dlo2, dhi2
do 430 i = dlo1, dhi1
if ( .not. (vfracdata(i,j,k).lt.vfeps)) then
dmax = max(dmax,data(i,j,k))
dmin = min(dmin,data(i,j,k))
endif
430 continue
420 continue
410 continue
return
end
c ::: --------------------------------------------------------------
subroutine FORT_CINTERP (fine,floi1,floi2,floi3,fhii1,fhii2,fhii3,
$ fblo,fbhi,nvar,lratio, crse,clo,chi,cblo,cbhi,fslo,fshi, cslope,
$ clen,fslope,fdat,flen,voff)
integer floi1,floi2,floi3, fhii1,fhii2,fhii3
integer fblo(3), fbhi(3)
integer cblo(3), cbhi(3)
integer fslo(3), fshi(3)
integer lratio, nvar, clen, flen, clo, chi
REAL_T fine(floi1 :fhii1 ,floi2 :fhii2 ,floi3 :fhii3, nvar)
REAL_T crse(clo:chi, nvar)
REAL_T cslope(clo:chi, 3)
REAL_T fslope(flen, 3)
REAL_T fdat(flen)
REAL_T voff(flen)
c ::: NOTE: data must be sent in so that
c ::: cslope(1,*) and crse(1,*) are associated with
c ::: the same cell
c ::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
c ::: cinterp: conservative interpolation from coarse grid to
c ::: subregion of fine grid defined by (fblo,fbhi)
c :::
c ::: Inputs/Outputs
c ::: fine <=> (modify) fine grid array
c ::: flo,fhi => (const) index limits of fine grid
c ::: fblo,fbhi => (const) subregion of fine grid to get values
c ::: nvar => (const) number of variables in state vector
c ::: lratio => (const) refinement ratio between levels
c :::
c ::: crse => (const) coarse grid data widended by 1 zone
c ::: and unrolled
c ::: clo,chi => (const) one dimensional limits of crse grid
c ::: cslo,cshi => (const) coarse grid index limits where
c ::: slopes are to be defined. This is
c ::: the projection of (fblo,fbhi) down
c ::: to the coarse level
c ::: fslo,fshi => (const) fine grid index limits where
c ::: slopes are needed. This is the
c ::: refinement of (cslo,cshi) and
c ::: contains but may not be identical
c ::: to (fblo,fbhi).
c ::: cslope => (modify) temp array coarse grid slopes
c ::: clen => (const) length of coarse gtid slopes
c ::: fslope => (modify) temp array for fine grid slope
c ::: flen => (const) length of fine grid slope array
c ::: fdat => (const) temp array for fine grid data
c ::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
c ::: local var
integer n, fn
integer i, ic, ioff
integer j, jc, joff
integer k, kc, koff
integer ist, jst, kst
REAL_T hafrat, volratio
REAL_T cen, forw, back, slp
REAL_T xoff, yoff, zoff
integer ncbx, ncby, ncbz
integer ncsx, ncsy, ncsz
integer islo, jslo, kslo
integer icc, istart, iend
integer lenx, leny, lenz, maxlen
hafrat = half*float(lratio-1)
volratio = one/float(lratio)
ncbx = cbhi(1)-cblo(1)+1
ncby = cbhi(2)-cblo(2)+1
ncbz = cbhi(3)-cblo(3)+1
ncsx = ncbx+2
ncsy = ncby+2
ncsz = ncbz+2
ist = 1
jst = ncsx
kst = ncsx*ncsy
islo = cblo(1)-1
jslo = cblo(2)-1
kslo = cblo(3)-1
lenx = fbhi(1)-fblo(1)+1
leny = fbhi(2)-fblo(2)+1
lenz = fbhi(3)-fblo(3)+1
maxlen = max(lenx,leny,lenz)
if (maxlen .eq. lenx) then
do 100 i = fblo(1), fbhi(1)
fn = i-fslo(1)+1
ioff = mod(fn-1,lratio)
voff(fn) = float(ioff)-hafrat
100 continue
else if (maxlen .eq. leny) then
do 110 j = fblo(2), fbhi(2)
fn = j-fslo(2)+1
joff = mod(fn-1,lratio)
voff(fn) = float(joff)-hafrat
110 continue
else
do 120 k = fblo(3), fbhi(3)
fn = k-fslo(3)+1
koff = mod(fn-1,lratio)
voff(fn) = float(koff)-hafrat
120 continue
end if
do 130 n = 1, nvar
c ::: ::::: compute slopes in x direction
do 140 i = 1, clen
cen = half*(crse(i+ist,n)-crse(i-ist,n))
forw = crse(i+ist,n)-crse(i,n)
back = crse(i,n)-crse(i-ist,n)
slp = sign(one,cen)*min(abs(cen),abs(forw),abs(back))
cslope(i,1)=cvmgp(slp,zero,forw*back)
140 continue
c ::: ::::: compute slopes in y direction
do 150 i = 1, clen
cen = half*(crse(i+jst,n)-crse(i-jst,n))
forw = crse(i+jst,n)-crse(i,n)
back = crse(i,n)-crse(i-jst,n)
slp = sign(one,cen)*min(abs(cen),abs(forw),abs(back))
cslope(i,2)=cvmgp(slp,zero,forw*back)
150 continue
c ::: ::::: compute slopes in z direction
do 160 i = 1, clen
cen = half*(crse(i+kst,n)-crse(i-kst,n))
forw = crse(i+kst,n)-crse(i,n)
back = crse(i,n)-crse(i-kst,n)
slp = sign(one,cen)*min(abs(cen),abs(forw),abs(back))
cslope(i,3)=cvmgp(slp,zero,forw*back)
160 continue
if (maxlen .eq. lenx) then
do 170 kc = cblo(3), cbhi(3)
do 180 jc = cblo(2), cbhi(2)
c ::: ..,.......::::: strip out a fine grid slope vector
do 190 ioff = 1, lratio
icc = clo + ist + jst*(jc-jslo) + kst*(kc-
$ kslo)
istart = ioff
iend = ioff + (ncbx-1)*lratio
do 200 fn = istart, iend, lratio
fslope(fn,1) = cslope(icc,1)
fslope(fn,2) = cslope(icc,2)
fslope(fn,3) = cslope(icc,3)
fdat(fn) = crse(icc,n)
icc = icc + ist
200 continue
190 continue
do 210 koff = 0, lratio-1
k = lratio*kc + koff
if (k .lt. fblo(3)) then
goto 210
c --- next ---
end if
if (k .gt. fbhi(3)) then
goto 211
c --- break ---
end if
zoff = float(koff)-hafrat
do 220 joff = 0, lratio-1
j = lratio*jc + joff
if (j .lt. fblo(2)) then
goto 220
c --- next ---
end if
if (j .gt. fbhi(2)) then
goto 221
c --- break ---
end if
yoff = float(joff)-hafrat
do 230 i = fblo(1), fbhi(1)
fn = i-fslo(1)+1
fine(i,j,k,n) = fdat(fn) + volratio*
$ (voff(fn)*fslope(fn,1)+yoff*fslope(fn,
$ 2)+ zoff*fslope(fn,3))
230 continue
220 continue
221 continue
210 continue
211 continue
180 continue
170 continue
else if (maxlen .eq. leny) then
do 240 kc = cblo(3), cbhi(3)
do 250 ic = cblo(1), cbhi(1)
c ::: ..,.......::::: strip out a fine grid slope vector
do 260 joff = 1, lratio
icc = clo + ist*(ic-islo) + jst + kst*(kc-
$ kslo)
istart = joff
iend = joff + (ncby-1)*lratio
do 270 fn = istart, iend, lratio
fslope(fn,1) = cslope(icc,1)
fslope(fn,2) = cslope(icc,2)
fslope(fn,3) = cslope(icc,3)
fdat(fn) = crse(icc,n)
icc = icc + jst
270 continue
260 continue
do 280 koff = 0, lratio-1
k = lratio*kc + koff
if (k .lt. fblo(3)) then
goto 280
c --- next ---
end if
if (k .gt. fbhi(3)) then
goto 281
c --- break ---
end if
zoff = float(koff)-hafrat
do 290 ioff = 0, lratio-1
i = lratio*ic + ioff
if (i .lt. fblo(1)) then
goto 290
c --- next ---
end if
if (i .gt. fbhi(1)) then
goto 291
c --- break ---
end if
xoff = float(ioff)-hafrat
do 300 j = fblo(2), fbhi(2)
fn = j-fslo(2)+1
fine(i,j,k,n) = fdat(fn) + volratio*
$ (xoff*fslope(fn,1)+voff(fn)*fslope(fn,
$ 2)+ zoff*fslope(fn,3))
300 continue
290 continue
291 continue
280 continue
281 continue
250 continue
240 continue
else
do 310 jc = cblo(2), cbhi(2)
do 320 ic = cblo(1), cbhi(1)
c ::: ..,.......::::: strip out a fine grid slope vector
do 330 koff = 1, lratio
icc = clo + ist*(ic-islo) + jst*(jc-jslo) +
$ kst
istart = koff
iend = koff + (ncbz-1)*lratio
do 340 fn = istart, iend, lratio
fslope(fn,1) = cslope(icc,1)
fslope(fn,2) = cslope(icc,2)
fslope(fn,3) = cslope(icc,3)
fdat(fn) = crse(icc,n)
icc = icc + kst
340 continue
330 continue
do 350 joff = 0, lratio-1
j = lratio*jc + joff
if (j .lt. fblo(2)) then
goto 350
c --- next ---
end if
if (j .gt. fbhi(2)) then
goto 351
c --- break ---
end if
yoff = float(joff)-hafrat
do 360 ioff = 0, lratio-1
i = lratio*ic + ioff
if (i .lt. fblo(1)) then
goto 360
c --- next ---
end if
if (i .gt. fbhi(1)) then
goto 361
c --- break ---
end if
xoff = float(ioff)-hafrat
do 370 k = fblo(3), fbhi(3)
fn = k-fslo(3)+1
fine(i,j,k,n) = fdat(fn) + volratio*
$ (xoff*fslope(fn,1)+yoff*fslope(fn,2)+
$ voff(fn)*fslope(fn,3))
370 continue
360 continue
361 continue
350 continue
351 continue
320 continue
310 continue
end if
130 continue
return
end
c ::: --------------------------------------------------------------
subroutine FORT_PCINTERP (fine,floi1,floi2,floi3,fhii1,fhii2,fhii3,
$ fblo, fbhi,lrat,nvar, crse,cloi1,cloi2,cloi3,chii1,chii2,chii3,
$ cblo, cbhi,temp,tloi,thii)
integer floi1,floi2,floi3
integer fhii1,fhii2,fhii3
integer cloi1,cloi2,cloi3
integer chii1,chii2,chii3
integer fblo(3), fbhi(3)
integer cblo(3), cbhi(3)
integer lrat, nvar, tloi, thii
REAL_T fine(floi1 :fhii1 ,floi2 :fhii2 ,floi3 :fhii3, nvar)
REAL_T crse(cloi1 :chii1 ,cloi2 :chii2 ,cloi3 :chii3, nvar)
REAL_T temp(tloi:thii + 1)
c ::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
c ::: pcinterp: use piecewise constant interpolation to define
c ::: values on the subregion of the fine FAB defined
c ::: by (fblo,fbhi).
c :::
c ::: Inputs/Outputs
c ::: fine <=> (modify) fab to get interpolated values
c ::: flo,fhi => (const) index limits of fine
c ::: fblo,fbhi => (const) subregion of fine grid to get values
c ::: crse => (const) fab holding coarse grid values
c ::: clo,chi => (const) index limits of src
c ::: cblo,cbhi => (const) subregion of coarse grid holding values
c ::: temp => (modify) temporary space for vectorization
c ::: tlo,thi => (const) index limits of temp space
c ::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
c ::: local var
integer i,j,k,ic,jc,kc,ioff,n
integer ixproj,ii,ll
ixproj(ii,ll) = (ii + ll*iabs(ii))/ll - iabs(ii)
do 130 k = fblo(3), fbhi(3)
kc = ixproj(k,lrat)
do 140 j = fblo(2), fbhi(2)
jc = ixproj(j,lrat)
do 150 n = 1, nvar
do 160 ioff = 0, lrat-1
do 170 ic = cblo(1),cbhi(1)
i = lrat*ic + ioff
temp(i) = crse(ic,jc,kc,n)
170 continue
160 continue
do 180 i = fblo(1), fbhi(1)
fine(i,j,k,n) = temp(i)
180 continue
150 continue
140 continue
130 continue
return
end
c ::: --------------------------------------------------------------
subroutine FORT_VCINTERP (fine,floi1,floi2,floi3,fhii1,fhii2,
$ fhii3,fbloi1,fbloi2,fbloi3, fbhii1,fbhii2,fbhii3,nvar,lratio,
$ crse,clo,chi,cblo,cbhi, fslo,fshi,cvloi1,cvloi2,cvloi3,cvhii1,
$ cvhii2,cvhii3, cslope,clen,fslope,fdat,flen,voff, cvc1,fvc1,cvc2,
$ fvc2,cvc3,fvc3)
integer floi1,floi2,floi3
integer fhii1,fhii2,fhii3
integer fbloi1,fbloi2,fbloi3
integer fbhii1,fbhii2,fbhii3
integer cvloi1,cvloi2,cvloi3
integer cvhii1,cvhii2,cvhii3
integer cblo(3), cbhi(3)
integer fslo(3), fshi(3)
integer lratio, nvar, clen, flen, clo, chi
REAL_T fine(floi1 :fhii1 ,floi2 :fhii2 ,floi3 :fhii3, nvar)
REAL_T crse(clo:chi, nvar)
REAL_T cslope(clo:chi, 3)
REAL_T fslope(flen, 3)
REAL_T fdat(flen)
REAL_T voff(flen)
REAL_T cvc1(cvloi1 :cvhii1+1)
REAL_T cvc2(cvloi2 :cvhii2+1)
REAL_T cvc3(cvloi3 :cvhii3+1)
REAL_T fvc1(fbloi1 :fbhii1+1)
REAL_T fvc2(fbloi2 :fbhii2+1)
REAL_T fvc3(fbloi3 :fbhii3+1)
c ::: NOTE: data must be sent in so that
c ::: cslope(1,*) and crse(1,*) are associated with
c ::: the same cell
c ::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
c ::: vcinterp: conservative interpolation in volume coordinates
c ::: from coarse grid to
c ::: subregion of fine grid defined by (fblo,fbhi)
c :::
c ::: Inputs/Outputs
c ::: fine <=> (modify) fine grid array
c ::: flo,fhi => (const) index limits of fine grid
c ::: fblo,fbhi => (const) subregion of fine grid to get values
c ::: nvar => (const) number of variables in state vector
c ::: lratio => (const) refinement ratio between levels
c :::
c ::: crse => (const) coarse grid data widended by 1 zone
c ::: and unrolled
c ::: clo,chi => (const) one dimensional limits of crse grid
c ::: cslo,cshi => (const) coarse grid index limits where
c ::: slopes are to be defined. This is
c ::: the projection of (fblo,fbhi) down
c ::: to the coarse level
c ::: fslo,fshi => (const) fine grid index limits where
c ::: slopes are needed. This is the
c ::: refinement of (cslo,cshi) and
c ::: contains but may not be identical
c ::: to (fblo,fbhi).
c ::: cslope => (modify) temp array coarse grid slopes
c ::: clen => (const) length of coarse gtid slopes
c ::: fslope => (modify) temp array for fine grid slope
c ::: flen => (const) length of fine grid slope array
c ::: fdat => (const) temp array for fine grid data
c ::: cvlo,cvhi => (const) coarse grid index limits where
c ::: volume coordinates are defined
c ::: cvc1 => (const) coarse grid volume coords, x-dir
c ::: cvc2 => (const) coarse grid volume coords, y_dir
c ::: cvc3 => (const) coarse grid volume coords, z-dir
c ::: fvc1 => (const) fine grid volume coords, x-dir
c ::: fvc2 => (const) fine grid volume coords, y-dir
c ::: fvc3 => (const) fine grid volume coords, z-dir
c ::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
c ::: local var
integer n, fn
integer i, ic, ioff
integer j, jc, joff
integer k, kc, koff
integer ist, jst, kst
REAL_T cen, forw, back, slp
REAL_T xoff, yoff, zoff
REAL_T fcen, ccen
integer ncbx, ncby, ncbz
integer ncsx, ncsy, ncsz
integer islo, jslo, kslo
integer icc, istart, iend
integer lenx, leny, lenz, maxlen
ncbx = cbhi(1)-cblo(1)+1
ncby = cbhi(2)-cblo(2)+1
ncbz = cbhi(3)-cblo(3)+1
ncsx = ncbx+2
ncsy = ncby+2
ncsz = ncbz+2
ist = 1
jst = ncsx
kst = ncsx*ncsy
islo = cblo(1)-1
jslo = cblo(2)-1
kslo = cblo(3)-1
lenx = fbhii1-fbloi1+1
leny = fbhii2-fbloi2+1
lenz = fbhii3-fbloi3+1
maxlen = max(lenx,leny,lenz)
if (maxlen .eq. lenx) then
do 380 i = fbloi1, fbhii1
fn = i-fslo(1)+1
ic = IX_PROJ(i,lratio)
fcen = half*(fvc1(i)+fvc1(i+1))
ccen = half*(cvc1(ic)+cvc1(ic+1))
voff(fn) = (fcen-ccen)/(cvc1(ic+1)-cvc1(ic))
380 continue
else if (maxlen .eq. leny) then
do 390 j = fbloi2, fbhii2
fn = j-fslo(2)+1
jc = IX_PROJ(j,lratio)
fcen = half*(fvc2(j)+fvc2(j+1))
ccen = half*(cvc2(jc)+cvc2(jc+1))
voff(fn) = (fcen-ccen)/(cvc2(jc+1)-cvc2(jc))
390 continue
else
do 400 k = fbloi3, fbhii3
fn = k-fslo(3)+1
kc = IX_PROJ(k,lratio)
fcen = half*(fvc3(k)+fvc3(k+1))
ccen = half*(cvc3(kc)+cvc3(kc+1))
voff(fn) = (fcen-ccen)/(cvc3(kc+1)-cvc3(kc))
400 continue
end if
do 410 n = 1, nvar
c ::: ::::: compute slopes in x direction
do 420 i = 1, clen
cen = half*(crse(i+ist,n)-crse(i-ist,n))
forw = crse(i+ist,n)-crse(i,n)
back = crse(i,n)-crse(i-ist,n)
slp = sign(one,cen)*min(abs(cen),abs(forw),abs(back))
cslope(i,1)=cvmgp(slp,zero,forw*back)
420 continue
c ::: ::::: compute slopes in y direction
do 430 i = 1, clen
cen = half*(crse(i+jst,n)-crse(i-jst,n))
forw = crse(i+jst,n)-crse(i,n)
back = crse(i,n)-crse(i-jst,n)
slp = sign(one,cen)*min(abs(cen),abs(forw),abs(back))
cslope(i,2)=cvmgp(slp,zero,forw*back)
430 continue
c ::: ::::: compute slopes in z direction
do 440 i = 1, clen
cen = half*(crse(i+kst,n)-crse(i-kst,n))
forw = crse(i+kst,n)-crse(i,n)
back = crse(i,n)-crse(i-kst,n)
slp = sign(one,cen)*min(abs(cen),abs(forw),abs(back))
cslope(i,3)=cvmgp(slp,zero,forw*back)
440 continue
if (maxlen .eq. lenx) then
do 450 kc = cblo(3), cbhi(3)
do 460 jc = cblo(2), cbhi(2)
c ::: ..,.......::::: strip out a fine grid slope vector
do 470 ioff = 1, lratio
icc = clo + ist + jst*(jc-jslo) + kst*(kc-
$ kslo)
istart = ioff
iend = ioff + (ncbx-1)*lratio
do 480 fn = istart, iend, lratio
fslope(fn,1) = cslope(icc,1)
fslope(fn,2) = cslope(icc,2)
fslope(fn,3) = cslope(icc,3)
fdat(fn) = crse(icc,n)
icc = icc + ist
480 continue
470 continue
do 490 koff = 0, lratio-1
k = lratio*kc + koff
if (k .lt. fbloi3) then
goto 490
c --- next ---
end if
if (k .gt. fbhii3) then
goto 491
c --- break ---
end if
fcen = half*(fvc3(k)+fvc3(k+1))
ccen = half*(cvc3(kc)+cvc3(kc+1))
zoff = (fcen-ccen)/(cvc3(kc+1)-cvc3(kc))
do 500 joff = 0, lratio-1
j = lratio*jc + joff
if (j .lt. fbloi2) then
goto 500
c --- next ---
end if
if (j .gt. fbhii2) then
goto 501
c --- break ---
end if
fcen = half*(fvc2(j)+fvc2(j+1))
ccen = half*(cvc2(jc)+cvc2(jc+1))
yoff = (fcen-ccen)/(cvc2(jc+1)-cvc2(jc))
do 510 i = fbloi1, fbhii1
fn = i-fslo(1)+1
fine(i,j,k,n) = fdat(fn) + voff(fn)*
$ fslope(fn,1)+yoff*fslope(fn,2)+ zoff*
$ fslope(fn,3)
510 continue
500 continue
501 continue
490 continue
491 continue
460 continue
450 continue
else if (maxlen .eq. leny) then
do 520 kc = cblo(3), cbhi(3)
do 530 ic = cblo(1), cbhi(1)
c ::: ..,.......::::: strip out a fine grid slope vector
do 540 joff = 1, lratio
icc = clo + ist*(ic-islo) + jst + kst*(kc-
$ kslo)
istart = joff
iend = joff + (ncby-1)*lratio
do 550 fn = istart, iend, lratio
fslope(fn,1) = cslope(icc,1)
fslope(fn,2) = cslope(icc,2)
fslope(fn,3) = cslope(icc,3)
fdat(fn) = crse(icc,n)
icc = icc + jst
550 continue
540 continue
do 560 koff = 0, lratio-1
k = lratio*kc + koff
if (k .lt. fbloi3) then
goto 560
c --- next ---
end if
if (k .gt. fbhii3) then
goto 561
c --- break ---
end if
fcen = half*(fvc3(k)+fvc3(k+1))
ccen = half*(cvc3(kc)+cvc3(kc+1))
zoff = (fcen-ccen)/(cvc3(kc+1)-cvc3(kc))
do 570 ioff = 0, lratio-1
i = lratio*ic + ioff
if (i .lt. fbloi1) then
goto 570
c --- next ---
end if
if (i .gt. fbhii1) then
goto 571
c --- break ---
end if
fcen = half*(fvc1(i)+fvc1(i+1))
ccen = half*(cvc1(ic)+cvc1(ic+1))
xoff = (fcen-ccen)/(cvc1(ic+1)-cvc1(ic))
do 580 j = fbloi2, fbhii2
fn = j-fslo(2)+1
fine(i,j,k,n) = fdat(fn) + xoff*
$ fslope(fn,1)+voff(fn)*fslope(fn,2)+
$ zoff*fslope(fn,3)
580 continue
570 continue
571 continue
560 continue
561 continue
530 continue
520 continue
else
do 590 jc = cblo(2), cbhi(2)
do 600 ic = cblo(1), cbhi(1)
c ::: ..,.......::::: strip out a fine grid slope vector
do 610 koff = 1, lratio
icc = clo + ist*(ic-islo) + jst*(jc-jslo) +
$ kst
istart = koff
iend = koff + (ncbz-1)*lratio
do 620 fn = istart, iend, lratio
fslope(fn,1) = cslope(icc,1)
fslope(fn,2) = cslope(icc,2)
fslope(fn,3) = cslope(icc,3)
fdat(fn) = crse(icc,n)
icc = icc + kst
620 continue
610 continue
do 630 joff = 0, lratio-1
j = lratio*jc + joff
if (j .lt. fbloi2) then
goto 630
c --- next ---
end if
if (j .gt. fbhii2) then
goto 631
c --- break ---
end if
fcen = half*(fvc2(j)+fvc2(j+1))
ccen = half*(cvc2(jc)+cvc2(jc+1))
yoff = (fcen-ccen)/(cvc2(jc+1)-cvc2(jc))
do 640 ioff = 0, lratio-1
i = lratio*ic + ioff
if (i .lt. fbloi1) then
goto 640
c --- next ---
end if
if (i .gt. fbhii1) then
goto 641
c --- break ---
end if
fcen = half*(fvc1(i)+fvc1(i+1))
ccen = half*(cvc1(ic)+cvc1(ic+1))
xoff = (fcen-ccen)/(cvc1(ic+1)-cvc1(ic))
do 650 k = fbloi3, fbhii3
fn = k-fslo(3)+1
fine(i,j,k,n) = fdat(fn) + xoff*
$ fslope(fn,1)+yoff*fslope(fn,2)+
$ voff(fn)*fslope(fn,3)
650 continue
640 continue
641 continue
630 continue
631 continue
600 continue
590 continue
end if
410 continue
return
end