-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathburn_cell.H
366 lines (310 loc) · 10.6 KB
/
burn_cell.H
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
#ifndef BURN_CELL_H
#define BURN_CELL_H
#include <fstream>
#include <iostream>
#include <burner.H>
#include <eos.H>
#include <extern_parameters.H>
#include <network.H>
#include <actual_network.H>
amrex::Real grav_constant = C::Gconst;
AMREX_INLINE
auto burn_cell_c() -> int {
burn_t state;
amrex::Real numdens[NumSpec] = {-1.0};
int n;
int x;
int nn;
amrex::Real metal = network_rp::metallicity;
for (n = 1; n <= NumSpec; ++n) {
switch (n) {
case 1:
numdens[n - 1] = unit_test_rp::primary_species_1;
break;
case 2:
numdens[n - 1] = unit_test_rp::primary_species_2;
break;
case 3:
numdens[n - 1] = unit_test_rp::primary_species_3;
break;
case 4:
numdens[n - 1] = unit_test_rp::primary_species_4;
break;
case 5:
numdens[n - 1] = unit_test_rp::primary_species_5;
break;
case 6:
numdens[n - 1] = unit_test_rp::primary_species_6;
break;
case 7:
numdens[n - 1] = unit_test_rp::primary_species_7;
break;
case 8:
numdens[n - 1] = unit_test_rp::primary_species_8;
break;
case 9:
numdens[n - 1] = unit_test_rp::primary_species_9;
break;
case 10:
numdens[n - 1] = unit_test_rp::primary_species_10;
break;
case 11:
numdens[n - 1] = unit_test_rp::primary_species_11;
break;
case 12:
numdens[n - 1] = unit_test_rp::primary_species_12;
break;
case 13:
numdens[n - 1] = unit_test_rp::primary_species_13;
break;
case 14:
numdens[n - 1] = unit_test_rp::primary_species_14;
break;
case 15:
numdens[n - 1] = unit_test_rp::primary_species_15;
break;
case 16:
numdens[n - 1] = unit_test_rp::primary_species_16;
break;
case 17:
numdens[n - 1] = unit_test_rp::primary_species_17*metal;
break;
case 18:
numdens[n - 1] = unit_test_rp::primary_species_18;
break;
case 19:
numdens[n - 1] = unit_test_rp::primary_species_19;
break;
case 20:
numdens[n - 1] = unit_test_rp::primary_species_20;
break;
case 21:
numdens[n - 1] = unit_test_rp::primary_species_21;
break;
case 22:
numdens[n - 1] = unit_test_rp::primary_species_22;
break;
case 23:
numdens[n - 1] = unit_test_rp::primary_species_23*metal;
break;
case 24:
numdens[n - 1] = unit_test_rp::primary_species_24;
break;
case 25:
numdens[n - 1] = unit_test_rp::primary_species_25;
break;
case 26:
numdens[n - 1] = unit_test_rp::primary_species_26;
break;
case 27:
numdens[n - 1] = unit_test_rp::primary_species_27;
break;
case 28:
numdens[n - 1] = unit_test_rp::primary_species_28;
break;
case 29:
numdens[n - 1] = unit_test_rp::primary_species_29;
break;
case 30:
numdens[n - 1] = unit_test_rp::primary_species_30;
break;
case 31:
numdens[n - 1] = unit_test_rp::primary_species_31;
break;
case 32:
numdens[n - 1] = unit_test_rp::primary_species_32;
break;
case 33:
numdens[n - 1] = unit_test_rp::primary_species_33;
break;
case 34:
numdens[n - 1] = unit_test_rp::primary_species_34;
break;
}
}
//scale number densities by initial ninit
for (n = 0; n < NumSpec; ++n) {
numdens[n] *= unit_test_rp::ninit;
}
//if metallicity is 0, reset metal number densities to 0
if (metal == 0) {
for (n = 0; n < NumSpec; ++n) {
if ((n < 2) || (n > 15)) {
state.xn[n] = 0.0;
}
}
}
// Echo initial conditions at burn and fill burn state input
std::cout << "Redshift: " << network_rp::redshift << std::endl;
std::cout << "Metallicity: " << metal << std::endl;
std::cout << "Dust2gas Ratio: " << network_rp::dust2gas_ratio << std::endl;
std::cout << " " << std::endl;
std::cout << "Maximum Time (s): " << unit_test_rp::tmax << std::endl;
std::cout << "State Temperature (K): " << unit_test_rp::temperature << std::endl;
for (n = 0; n < NumSpec; ++n) {
std::cout << "Number Density input (" << short_spec_names_cxx[n]
<< "): " << numdens[n] << std::endl;
}
amrex::Real TCMB = 2.73*(1.0 + network_rp::redshift);
state.T = amrex::max(unit_test_rp::temperature, TCMB);
// set initial Tdust to CMB
state.aux[0] = TCMB;
// find the density in g/cm^3
amrex::Real rhotot = 0.0_rt;
amrex::Real sum_numdens = 0.0_rt;
for (n = 0; n < NumSpec; ++n) {
state.xn[n] = numdens[n];
rhotot += state.xn[n] * spmasses[n]; // spmasses contains the masses of all
// species, defined in EOS
sum_numdens += state.xn[n];
}
state.rho = rhotot;
std::cout << "rho: " << rhotot << ", dd: " << sum_numdens << std::endl;
// call the EOS to set initial internal energy e
eos(eos_input_rt, state);
std::cout << "initial eint: " << state.e << std::endl;
// name of output file
std::ofstream state_over_time("state_over_time.txt");
// save the initial state -- we'll use this to determine
// how much things changed over the entire burn
burn_t state_in = state;
// output the data in columns, one line per timestep
state_over_time << std::setw(10) << "# Time";
state_over_time << std::setw(15) << "NumberDensity";
state_over_time << std::setw(15) << "Density";
state_over_time << std::setw(15) << "Tgas";
state_over_time << std::setw(15) << "Tdust";
for (x = 0; x < NumSpec; ++x) {
const std::string &element = short_spec_names_cxx[x];
state_over_time << std::setw(15) << element;
}
state_over_time << std::endl;
amrex::Real t = 0.0;
state_over_time << std::setw(10) << t;
state_over_time << std::setw(15) << sum_numdens;
state_over_time << std::setw(15) << state.rho;
state_over_time << std::setw(15) << state.T;
state_over_time << std::setw(15) << state.aux[0];
for (x = 0; x < NumSpec; ++x) {
state_over_time << std::setw(15) << state.xn[x];
}
state_over_time << std::endl;
// loop over steps, burn, and output the current state
// the loop below is similar to that used in krome and GPUAstroChem
amrex::Real dd = rhotot;
amrex::Real dd1 = 0.0_rt;
for (n = 0; n < unit_test_rp::nsteps; n++) {
dd1 = dd;
amrex::Real rhotmp = 0.0_rt;
for (nn = 0; nn < NumSpec; ++nn) {
rhotmp += state.xn[nn] * spmasses[nn];
}
// find the freefall time
amrex::Real tff = std::sqrt(M_PI * 3.0 / (32.0 * rhotmp * grav_constant));
amrex::Real dt = unit_test_rp::tff_reduc * tff;
// scale the density
dd += dt * (dd / tff);
// stop the test if dt is very small
if (dt < 10) {
break;
}
// stop the test if we have reached very high densities
if (dd > 2e-6) {
break;
}
// scale the number densities
for (nn = 0; nn < NumSpec; ++nn) {
state.xn[nn] *= dd / dd1;
}
// update the number density of electrons due to charge conservation
balance_charge(state);
// input the scaled density in burn state
rhotmp = 0.0_rt;
for (nn = 0; nn < NumSpec; ++nn) {
rhotmp += state.xn[nn] * spmasses[nn];
}
state.rho = rhotmp;
// call the EOS to scale internal energy e
eos(eos_input_rt, state);
//std::cout << "before burn: " << state.rho << ", " << state.T << ", " << state.xn << ", " << state.e << std::endl;
integrator_rp::ode_max_dt = dt*1e0;
// do the actual integration
burner(state, dt);
// ensure positivity and normalize
//amrex::Real inmfracs[NumSpec] = {-1.0};
//amrex::Real insum = 0.0_rt;
//for (int nn = 0; nn < NumSpec; ++nn) {
// state.xn[nn] = amrex::max(state.xn[nn], small_x);
// inmfracs[nn] = spmasses[nn] * state.xn[nn] / state.rho;
// insum += inmfracs[nn];
//}
//for (int nn = 0; nn < NumSpec; ++nn) {
// inmfracs[nn] /= insum;
// // update the number densities with conserved mass fractions
// state.xn[nn] = inmfracs[nn] * state.rho / spmasses[nn];
//}
// update the number density of electrons due to charge conservation
balance_charge(state);
// reconserve mass fractions post charge conservation
//insum = 0;
//for (int nn = 0; nn < NumSpec; ++nn) {
// state.xn[nn] = amrex::max(state.xn[nn], small_x);
// inmfracs[nn] = spmasses[nn] * state.xn[nn] / state.rho;
// insum += inmfracs[nn];
//}
//for (int nn = 0; nn < NumSpec; ++nn) {
// inmfracs[nn] /= insum;
// // update the number densities with conserved mass fractions
// state.xn[nn] = inmfracs[nn] * state.rho / spmasses[nn];
//}
// get the updated T
eos(eos_input_re, state);
// ensure T is >= TCMB
state.T = amrex::max(state.T, TCMB);
t += dt;
// get number density
// make abundance 0 for all metals if metallicity is 0
sum_numdens = 0.0;
for (nn = 0; nn < NumSpec; ++nn) {
if (metal == 0 && ((nn < 2) || (nn > 15))) {
state.xn[nn] = 0.0;
}
sum_numdens += state.xn[nn];
}
state_over_time << std::setw(10) << t;
state_over_time << std::setw(15) << sum_numdens;
state_over_time << std::setw(15) << state.rho;
state_over_time << std::setw(12) << state.T;
state_over_time << std::setw(12) << state.aux[0];
for (x = 0; x < NumSpec; ++x) {
state_over_time << std::setw(15) << state.xn[x];
}
state_over_time << std::endl;
std::cout << "step " << n << " done with dt = " << dt << std::endl;
// print some output at intermediate densities for testing purposes if redshift > 0
if (state.rho > 1e-18 && state.rho < 1.2e-18 && redshift > 0) {
std::cout << "Tgas = " << state.T << std::endl;
}
}
state_over_time.close();
// output diagnostics to the terminal
std::cout << "------------------------------------" << std::endl;
std::cout << "successful? " << state.success << std::endl;
std::cout << "------------------------------------" << std::endl;
std::cout << "T initial = " << state_in.T << std::endl;
std::cout << "T final = " << state.T << std::endl;
std::cout << "Tdust initial = " << state_in.aux[0] << std::endl;
std::cout << "Tdust final = " << state.aux[0] << std::endl;
std::cout << "Eint initial = " << state_in.e << std::endl;
std::cout << "Eint final = " << state.e << std::endl;
std::cout << "rho initial = " << state_in.rho << std::endl;
std::cout << "rho final = " << state.rho << std::endl;
std::cout << "numdens final = " << sum_numdens << std::endl;
std::cout << "------------------------------------" << std::endl;
std::cout << "New number densities: " << std::endl;
for (n = 0; n < NumSpec; ++n) {
std::cout << state.xn[n] << std::endl;
}
return state.success;
}
#endif