-
Notifications
You must be signed in to change notification settings - Fork 18
/
02.evaluate_CNN.py
224 lines (194 loc) · 6.26 KB
/
02.evaluate_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import imageio.core.util
from facenet_pytorch import MTCNN
from PIL import Image
import pandas as pd
import cv2
import time
import argparse
import numpy as np
from keras.models import Model
from keras.layers.pooling import GlobalAveragePooling2D
from keras.layers.core import Dropout, Dense
from keras.optimizers import Nadam
from keras.applications.xception import Xception
from keras.applications.resnet50 import ResNet50
from keras.applications.inception_v3 import InceptionV3
from keras.applications.inception_resnet_v2 import InceptionResNetV2
from keras.applications.nasnet import NASNetLarge
from keras_efficientnets import EfficientNetB5, EfficientNetB0
from sklearn.metrics import (
precision_score,
recall_score,
f1_score,
accuracy_score
)
def ignore_warnings(*args, **kwargs):
pass
def cnn_model(model_name, img_size):
"""
Model definition using Xception net architecture
"""
input_size = (img_size, img_size, 3)
if model_name == "xception":
baseModel = Xception(
weights="imagenet",
include_top=False,
input_shape=(img_size, img_size, 3)
)
elif model_name == "iv3":
baseModel = InceptionV3(
weights="imagenet",
include_top=False,
input_shape=(img_size, img_size, 3)
)
elif model_name == "irv2":
baseModel = InceptionResNetV2(
weights="imagenet",
include_top=False,
input_shape=(img_size, img_size, 3)
)
elif model_name == "resnet":
baseModel = ResNet50(
weights="imagenet",
include_top=False,
input_shape=(img_size, img_size, 3)
)
elif model_name == "nasnet":
baseModel = NASNetLarge(
weights="imagenet",
include_top=False,
input_shape=(img_size, img_size, 3)
)
elif model_name == "ef0":
baseModel = EfficientNetB0(
input_size,
weights="imagenet",
include_top=False
)
elif model_name == "ef5":
baseModel = EfficientNetB5(
input_size,
weights="imagenet",
include_top=False
)
headModel = baseModel.output
headModel = GlobalAveragePooling2D()(headModel)
headModel = Dense(512, activation="relu", kernel_initializer="he_uniform")(
headModel
)
headModel = Dropout(0.4)(headModel)
# headModel = Dense(512, activation="relu", kernel_initializer="he_uniform")(
# headModel
# )
# headModel = Dropout(0.5)(headModel)
headModel = Dropout(0.5)(headModel)
predictions = Dense(
2,
activation="softmax",
kernel_initializer="he_uniform")(
headModel
)
model = Model(inputs=baseModel.input, outputs=predictions)
for layer in baseModel.layers:
layer.trainable = True
optimizer = Nadam(
lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004
)
model.compile(
loss="categorical_crossentropy",
optimizer=optimizer,
metrics=["accuracy"]
)
return model
def main():
start = time.time()
ap = argparse.ArgumentParser()
ap.add_argument(
"-m", "--model_name", required=True, type=str,
help="Imagenet model to train", default="xception"
)
ap.add_argument(
"-w",
"--load_weights_name",
required=True,
type=str,
help="Model wieghts name"
)
ap.add_argument(
"-im_size",
"--image_size",
required=True,
type=int,
help="Batch size",
default=224,
)
args = ap.parse_args()
# Read video labels from csv file
test_data = pd.read_csv("test_vids_label.csv")
videos = test_data["vids_list"]
true_labels = test_data["label"]
# Suppress unncessary warnings
imageio.core.util._precision_warn = ignore_warnings
# Create face detector
mtcnn = MTCNN(
margin=40,
select_largest=False,
post_process=False,
device="cuda:0"
)
# Loading model weights
model = cnn_model(args.model_name, img_size=args.image_size)
model.load_weights("trained_wts/" + args.load_weights_name + ".hdf5")
print("Weights loaded...")
y_predictions = []
y_probabilities = []
videos_done = 0
for video in videos:
cap = cv2.VideoCapture(video)
batches = []
# Number of frames taken into consideration for each video
while (cap.isOpened() and len(batches) < 25):
ret, frame = cap.read()
if ret is not True:
break
frame = cv2.resize(frame, (args.img_size, args.img_size))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
face = mtcnn(frame)
try:
face = face.permute(1, 2, 0).int().numpy()
batches.append(face)
except AttributeError:
print("Image Skipping")
batches = np.asarray(batches).astype("float32")
batches /= 255
predictions = model.predict(batches)
# Predict the output of each frame
# axis =1 along the row and axis=0 along the column
predictions_mean = np.mean(predictions, axis=0)
y_probabilities += [predictions_mean]
y_predictions += [predictions_mean.argmax(0)]
cap.release()
if videos_done % 10 == 0:
print("Number of videos done:", videos_done)
videos_done += 1
print("Accuracy Score:", accuracy_score(true_labels, y_predictions))
print("Precision Score:", precision_score(true_labels, y_predictions))
print("Recall Score:", recall_score(true_labels, y_predictions))
print("F1 Score:", f1_score(true_labels, y_predictions))
# Saving predictions and probabilities for further calculation
# of AUC scores.
np.save("Y_predictions.npy", y_predictions)
np.save("Y_probabilities.npy", y_probabilities)
end = time.time()
dur = end - start
if dur < 60:
print("Execution Time:", dur, "seconds")
elif dur > 60 and dur < 3600:
dur = dur / 60
print("Execution Time:", dur, "minutes")
else:
dur = dur / (60 * 60)
print("Execution Time:", dur, "hours")
if __name__ == "__main__":
main()