-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
executable file
·133 lines (95 loc) · 3.53 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import os
import hparams
def process_text(train_text_path):
with open(train_text_path, "r", encoding="utf-8") as f:
txt = []
for line in f.readlines():
txt.append(line)
return txt
def get_param_num(model):
num_param = sum(param.numel() for param in model.parameters())
return num_param
def get_mask_from_lengths(lengths, max_len=None):
if max_len == None:
max_len = torch.max(lengths).item()
ids = torch.arange(0, max_len, out=torch.cuda.LongTensor(max_len))
mask = (ids < lengths.unsqueeze(1)).bool()
return mask
def get_WaveGlow():
waveglow_path = os.path.join("waveglow", "pretrained_model")
waveglow_path = os.path.join(waveglow_path, "waveglow_256channels.pt")
wave_glow = torch.load(waveglow_path)['model']
wave_glow = wave_glow.remove_weightnorm(wave_glow)
wave_glow.cuda().eval()
for m in wave_glow.modules():
if 'Conv' in str(type(m)):
setattr(m, 'padding_mode', 'zeros')
return wave_glow
def pad_1D(inputs, PAD=0):
def pad_data(x, length, PAD):
x_padded = np.pad(x, (0, length - x.shape[0]),
mode='constant',
constant_values=PAD)
return x_padded
max_len = max((len(x) for x in inputs))
padded = np.stack([pad_data(x, max_len, PAD) for x in inputs])
return padded
def pad_1D_tensor(inputs, PAD=0):
def pad_data(x, length, PAD):
x_padded = F.pad(x, (0, length - x.shape[0]))
return x_padded
max_len = max((len(x) for x in inputs))
padded = torch.stack([pad_data(x, max_len, PAD) for x in inputs])
return padded
def pad_2D(inputs, maxlen=None):
def pad(x, max_len):
PAD = 0
if np.shape(x)[0] > max_len:
raise ValueError("not max_len")
s = np.shape(x)[1]
x_padded = np.pad(x, (0, max_len - np.shape(x)[0]),
mode='constant',
constant_values=PAD)
return x_padded[:, :s]
if maxlen:
output = np.stack([pad(x, maxlen) for x in inputs])
else:
max_len = max(np.shape(x)[0] for x in inputs)
output = np.stack([pad(x, max_len) for x in inputs])
return output
def pad_2D_tensor(inputs, maxlen=None):
def pad(x, max_len):
if x.size(0) > max_len:
raise ValueError("not max_len")
s = x.size(1)
x_padded = F.pad(x, (0, 0, 0, max_len-x.size(0)))
return x_padded[:, :s]
if maxlen:
output = torch.stack([pad(x, maxlen) for x in inputs])
else:
max_len = max(x.size(0) for x in inputs)
output = torch.stack([pad(x, max_len) for x in inputs])
return output
def pad(input_ele, mel_max_length=None):
if mel_max_length:
out_list = list()
max_len = mel_max_length
for i, batch in enumerate(input_ele):
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len-batch.size(0)), "constant", 0.0)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded
else:
out_list = list()
max_len = max([input_ele[i].size(0)for i in range(len(input_ele))])
for i, batch in enumerate(input_ele):
one_batch_padded = F.pad(
batch, (0, 0, 0, max_len-batch.size(0)), "constant", 0.0)
out_list.append(one_batch_padded)
out_padded = torch.stack(out_list)
return out_padded