-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathpatch_match.py
298 lines (269 loc) · 13.8 KB
/
patch_match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from .cupy_kernels import remapping_kernel, patch_error_kernel, pairwise_patch_error_kernel
import numpy as np
import cupy as cp
import cv2
class PatchMatcher:
def __init__(
self, height, width, channel, minimum_patch_size,
threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0,
random_search_steps=3, random_search_range=4,
use_mean_target_style=False, use_pairwise_patch_error=False,
tracking_window_size=0
):
self.height = height
self.width = width
self.channel = channel
self.minimum_patch_size = minimum_patch_size
self.threads_per_block = threads_per_block
self.num_iter = num_iter
self.gpu_id = gpu_id
self.guide_weight = guide_weight
self.random_search_steps = random_search_steps
self.random_search_range = random_search_range
self.use_mean_target_style = use_mean_target_style
self.use_pairwise_patch_error = use_pairwise_patch_error
self.tracking_window_size = tracking_window_size
self.patch_size_list = [minimum_patch_size + i*2 for i in range(num_iter)][::-1]
self.pad_size = self.patch_size_list[0] // 2
self.grid = (
(height + threads_per_block - 1) // threads_per_block,
(width + threads_per_block - 1) // threads_per_block
)
self.block = (threads_per_block, threads_per_block)
def pad_image(self, image):
return cp.pad(image, ((0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size), (0, 0)))
def unpad_image(self, image):
return image[:, self.pad_size: -self.pad_size, self.pad_size: -self.pad_size, :]
def apply_nnf_to_image(self, nnf, source):
batch_size = source.shape[0]
target = cp.zeros((batch_size, self.height + self.pad_size * 2, self.width + self.pad_size * 2, self.channel), dtype=cp.float32)
remapping_kernel(
self.grid + (batch_size,),
self.block,
(self.height, self.width, self.channel, self.patch_size, self.pad_size, source, nnf, target)
)
return target
def get_patch_error(self, source, nnf, target):
batch_size = source.shape[0]
error = cp.zeros((batch_size, self.height, self.width), dtype=cp.float32)
patch_error_kernel(
self.grid + (batch_size,),
self.block,
(self.height, self.width, self.channel, self.patch_size, self.pad_size, source, nnf, target, error)
)
return error
def get_pairwise_patch_error(self, source, nnf):
batch_size = source.shape[0]//2
error = cp.zeros((batch_size, self.height, self.width), dtype=cp.float32)
source_a, nnf_a = source[0::2].copy(), nnf[0::2].copy()
source_b, nnf_b = source[1::2].copy(), nnf[1::2].copy()
pairwise_patch_error_kernel(
self.grid + (batch_size,),
self.block,
(self.height, self.width, self.channel, self.patch_size, self.pad_size, source_a, nnf_a, source_b, nnf_b, error)
)
error = error.repeat(2, axis=0)
return error
def get_error(self, source_guide, target_guide, source_style, target_style, nnf):
error_guide = self.get_patch_error(source_guide, nnf, target_guide)
if self.use_mean_target_style:
target_style = self.apply_nnf_to_image(nnf, source_style)
target_style = target_style.mean(axis=0, keepdims=True)
target_style = target_style.repeat(source_guide.shape[0], axis=0)
if self.use_pairwise_patch_error:
error_style = self.get_pairwise_patch_error(source_style, nnf)
else:
error_style = self.get_patch_error(source_style, nnf, target_style)
error = error_guide * self.guide_weight + error_style
return error
def clamp_bound(self, nnf):
nnf[:,:,:,0] = cp.clip(nnf[:,:,:,0], 0, self.height-1)
nnf[:,:,:,1] = cp.clip(nnf[:,:,:,1], 0, self.width-1)
return nnf
def random_step(self, nnf, r):
batch_size = nnf.shape[0]
step = cp.random.randint(-r, r+1, size=(batch_size, self.height, self.width, 2), dtype=cp.int32)
upd_nnf = self.clamp_bound(nnf + step)
return upd_nnf
def neighboor_step(self, nnf, d):
if d==0:
upd_nnf = cp.concatenate([nnf[:, :1, :], nnf[:, :-1, :]], axis=1)
upd_nnf[:, :, :, 0] += 1
elif d==1:
upd_nnf = cp.concatenate([nnf[:, :, :1], nnf[:, :, :-1]], axis=2)
upd_nnf[:, :, :, 1] += 1
elif d==2:
upd_nnf = cp.concatenate([nnf[:, 1:, :], nnf[:, -1:, :]], axis=1)
upd_nnf[:, :, :, 0] -= 1
elif d==3:
upd_nnf = cp.concatenate([nnf[:, :, 1:], nnf[:, :, -1:]], axis=2)
upd_nnf[:, :, :, 1] -= 1
upd_nnf = self.clamp_bound(upd_nnf)
return upd_nnf
def shift_nnf(self, nnf, d):
if d>0:
d = min(nnf.shape[0], d)
upd_nnf = cp.concatenate([nnf[d:]] + [nnf[-1:]] * d, axis=0)
else:
d = max(-nnf.shape[0], d)
upd_nnf = cp.concatenate([nnf[:1]] * (-d) + [nnf[:d]], axis=0)
return upd_nnf
def track_step(self, nnf, d):
if self.use_pairwise_patch_error:
upd_nnf = cp.zeros_like(nnf)
upd_nnf[0::2] = self.shift_nnf(nnf[0::2], d)
upd_nnf[1::2] = self.shift_nnf(nnf[1::2], d)
else:
upd_nnf = self.shift_nnf(nnf, d)
return upd_nnf
def C(self, n, m):
# not used
c = 1
for i in range(1, n+1):
c *= i
for i in range(1, m+1):
c //= i
for i in range(1, n-m+1):
c //= i
return c
def bezier_step(self, nnf, r):
# not used
n = r * 2 - 1
upd_nnf = cp.zeros(shape=nnf.shape, dtype=cp.float32)
for i, d in enumerate(list(range(-r, 0)) + list(range(1, r+1))):
if d>0:
ctl_nnf = cp.concatenate([nnf[d:]] + [nnf[-1:]] * d, axis=0)
elif d<0:
ctl_nnf = cp.concatenate([nnf[:1]] * (-d) + [nnf[:d]], axis=0)
upd_nnf += ctl_nnf * (self.C(n, i) / 2**n)
upd_nnf = self.clamp_bound(upd_nnf).astype(nnf.dtype)
return upd_nnf
def update(self, source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf):
upd_err = self.get_error(source_guide, target_guide, source_style, target_style, upd_nnf)
upd_idx = (upd_err < err)
nnf[upd_idx] = upd_nnf[upd_idx]
err[upd_idx] = upd_err[upd_idx]
return nnf, err
def propagation(self, source_guide, target_guide, source_style, target_style, nnf, err):
for d in cp.random.permutation(4):
upd_nnf = self.neighboor_step(nnf, d)
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
return nnf, err
def random_search(self, source_guide, target_guide, source_style, target_style, nnf, err):
for i in range(self.random_search_steps):
upd_nnf = self.random_step(nnf, self.random_search_range)
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
return nnf, err
def track(self, source_guide, target_guide, source_style, target_style, nnf, err):
for d in range(1, self.tracking_window_size + 1):
upd_nnf = self.track_step(nnf, d)
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
upd_nnf = self.track_step(nnf, -d)
nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf)
return nnf, err
def iteration(self, source_guide, target_guide, source_style, target_style, nnf, err):
nnf, err = self.propagation(source_guide, target_guide, source_style, target_style, nnf, err)
nnf, err = self.random_search(source_guide, target_guide, source_style, target_style, nnf, err)
nnf, err = self.track(source_guide, target_guide, source_style, target_style, nnf, err)
return nnf, err
def estimate_nnf(self, source_guide, target_guide, source_style, nnf):
with cp.cuda.Device(self.gpu_id):
source_guide = self.pad_image(source_guide)
target_guide = self.pad_image(target_guide)
source_style = self.pad_image(source_style)
for it in range(self.num_iter):
self.patch_size = self.patch_size_list[it]
target_style = self.apply_nnf_to_image(nnf, source_style)
err = self.get_error(source_guide, target_guide, source_style, target_style, nnf)
nnf, err = self.iteration(source_guide, target_guide, source_style, target_style, nnf, err)
target_style = self.unpad_image(self.apply_nnf_to_image(nnf, source_style))
return nnf, target_style
class PyramidPatchMatcher:
def __init__(
self, image_height, image_width, channel, minimum_patch_size,
threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0,
use_mean_target_style=False, use_pairwise_patch_error=False,
tracking_window_size=0,
initialize="identity"
):
maximum_patch_size = minimum_patch_size + (num_iter - 1) * 2
self.pyramid_level = int(np.log2(min(image_height, image_width) / maximum_patch_size))
self.pyramid_heights = []
self.pyramid_widths = []
self.patch_matchers = []
self.minimum_patch_size = minimum_patch_size
self.num_iter = num_iter
self.gpu_id = gpu_id
self.initialize = initialize
for level in range(self.pyramid_level):
height = image_height//(2**(self.pyramid_level - 1 - level))
width = image_width//(2**(self.pyramid_level - 1 - level))
self.pyramid_heights.append(height)
self.pyramid_widths.append(width)
self.patch_matchers.append(PatchMatcher(
height, width, channel, minimum_patch_size=minimum_patch_size,
threads_per_block=threads_per_block, num_iter=num_iter, gpu_id=gpu_id, guide_weight=guide_weight,
use_mean_target_style=use_mean_target_style, use_pairwise_patch_error=use_pairwise_patch_error,
tracking_window_size=tracking_window_size
))
def resample_image(self, images, level):
height, width = self.pyramid_heights[level], self.pyramid_widths[level]
images = images.get()
images_resample = []
for image in images:
image_resample = cv2.resize(image, (width, height), interpolation=cv2.INTER_AREA)
images_resample.append(image_resample)
images_resample = cp.array(np.stack(images_resample), dtype=cp.float32)
return images_resample
def initialize_nnf(self, batch_size):
if self.initialize == "random":
height, width = self.pyramid_heights[0], self.pyramid_widths[0]
nnf = cp.stack([
cp.random.randint(0, height, (batch_size, height, width), dtype=cp.int32),
cp.random.randint(0, width, (batch_size, height, width), dtype=cp.int32)
], axis=3)
elif self.initialize == "identity":
height, width = self.pyramid_heights[0], self.pyramid_widths[0]
nnf = cp.stack([
cp.repeat(cp.arange(height), width).reshape(height, width),
cp.tile(cp.arange(width), height).reshape(height, width)
], axis=2)
nnf = cp.stack([nnf] * batch_size)
else:
raise NotImplementedError()
return nnf
def update_nnf(self, nnf, level):
# upscale
nnf = nnf.repeat(2, axis=1).repeat(2, axis=2) * 2
nnf[:,[i for i in range(nnf.shape[0]) if i&1],:,0] += 1
nnf[:,:,[i for i in range(nnf.shape[0]) if i&1],1] += 1
# check if scale is 2
height, width = self.pyramid_heights[level], self.pyramid_widths[level]
if height != nnf.shape[0] * 2 or width != nnf.shape[1] * 2:
nnf = nnf.get().astype(np.float32)
nnf = [cv2.resize(n, (width, height), interpolation=cv2.INTER_LINEAR) for n in nnf]
nnf = cp.array(np.stack(nnf), dtype=cp.int32)
nnf = self.patch_matchers[level].clamp_bound(nnf)
return nnf
def apply_nnf_to_image(self, nnf, image):
with cp.cuda.Device(self.gpu_id):
image = self.patch_matchers[-1].pad_image(image)
image = self.patch_matchers[-1].apply_nnf_to_image(nnf, image)
return image
def estimate_nnf(self, source_guide, target_guide, source_style):
with cp.cuda.Device(self.gpu_id):
if not isinstance(source_guide, cp.ndarray):
source_guide = cp.array(source_guide, dtype=cp.float32)
if not isinstance(target_guide, cp.ndarray):
target_guide = cp.array(target_guide, dtype=cp.float32)
if not isinstance(source_style, cp.ndarray):
source_style = cp.array(source_style, dtype=cp.float32)
for level in range(self.pyramid_level):
nnf = self.initialize_nnf(source_guide.shape[0]) if level==0 else self.update_nnf(nnf, level)
source_guide_ = self.resample_image(source_guide, level)
target_guide_ = self.resample_image(target_guide, level)
source_style_ = self.resample_image(source_style, level)
nnf, target_style = self.patch_matchers[level].estimate_nnf(
source_guide_, target_guide_, source_style_, nnf
)
return nnf.get(), target_style.get()