-
Notifications
You must be signed in to change notification settings - Fork 299
/
Copy pathtransformer_bottleneck.py
343 lines (294 loc) · 13.6 KB
/
transformer_bottleneck.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""
This code is based on huggingface,
https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py
MIT License
Copyright (c) 2018 OpenAI
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OFS CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
# Arxiv Link https://arxiv.org/pdf/1907.00235.pdf
import numpy as np
import torch
import torch.nn as nn
import math
# from torch.distributions.normal import Normal
import copy
from torch.nn.parameter import Parameter
from typing import Dict
from flood_forecast.transformer_xl.lower_upper_config import activation_dict
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
def swish(x):
return x * torch.sigmoid(x)
ACT_FNS = {
'relu': nn.ReLU(),
'swish': swish,
'gelu': gelu
}
class Attention(nn.Module):
def __init__(self, n_head, n_embd, win_len, scale, q_len, sub_len, sparse=None, attn_pdrop=0.1, resid_pdrop=0.1):
super(Attention, self).__init__()
if(sparse):
print('Activate log sparse!')
mask = self.log_mask(win_len, sub_len)
else:
mask = torch.tril(torch.ones(win_len, win_len)).view(1, 1, win_len, win_len)
self.register_buffer('mask_tri', mask)
self.n_head = n_head
self.split_size = n_embd * self.n_head
self.scale = scale
self.q_len = q_len
self.query_key = nn.Conv1d(n_embd, n_embd * n_head * 2, self.q_len)
self.value = Conv1D(n_embd * n_head, 1, n_embd)
self.c_proj = Conv1D(n_embd, 1, n_embd * self.n_head)
self.attn_dropout = nn.Dropout(attn_pdrop)
self.resid_dropout = nn.Dropout(resid_pdrop)
def log_mask(self, win_len, sub_len):
mask = torch.zeros((win_len, win_len), dtype=torch.float)
for i in range(win_len):
mask[i] = self.row_mask(i, sub_len, win_len)
return mask.view(1, 1, mask.size(0), mask.size(1))
def row_mask(self, index, sub_len, win_len):
"""
Remark:
1 . Currently, dense matrices with sparse multiplication are not supported by Pytorch. Efficient implementation
should deal with CUDA kernel, which we haven't implemented yet.
2 . Our default setting here use Local attention and Restart attention.
3 . For index-th row, if its past is smaller than the number of cells the last
cell can attend, we can allow current cell to attend all past cells to fully
utilize parallel computing in dense matrices with sparse multiplication."""
log_l = math.ceil(np.log2(sub_len))
mask = torch.zeros((win_len), dtype=torch.float)
if((win_len // sub_len) * 2 * (log_l) > index):
mask[:(index + 1)] = 1
else:
while(index >= 0):
if((index - log_l + 1) < 0):
mask[:index] = 1
break
mask[index - log_l + 1:(index + 1)] = 1 # Local attention
for i in range(0, log_l):
new_index = index - log_l + 1 - 2**i
if((index - new_index) <= sub_len and new_index >= 0):
mask[new_index] = 1
index -= sub_len
return mask
def attn(self, query: torch.Tensor, key, value: torch.Tensor, activation="Softmax"):
activation = activation_dict[activation](dim=-1)
pre_att = torch.matmul(query, key)
if self.scale:
pre_att = pre_att / math.sqrt(value.size(-1))
mask = self.mask_tri[:, :, :pre_att.size(-2), :pre_att.size(-1)]
pre_att = pre_att * mask + -1e9 * (1 - mask)
pre_att = activation(pre_att)
pre_att = self.attn_dropout(pre_att)
attn = torch.matmul(pre_att, value)
return attn
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape)
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape)
if k:
return x.permute(0, 2, 3, 1)
else:
return x.permute(0, 2, 1, 3)
def forward(self, x):
value = self.value(x)
qk_x = nn.functional.pad(x.permute(0, 2, 1), pad=(self.q_len - 1, 0))
query_key = self.query_key(qk_x).permute(0, 2, 1)
query, key = query_key.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
attn = self.attn(query, key, value)
attn = self.merge_heads(attn)
attn = self.c_proj(attn)
attn = self.resid_dropout(attn)
return attn
class Conv1D(nn.Module):
def __init__(self, out_dim, rf, in_dim):
super(Conv1D, self).__init__()
self.rf = rf
self.out_dim = out_dim
if rf == 1:
w = torch.empty(in_dim, out_dim)
nn.init.normal_(w, std=0.02)
self.w = Parameter(w)
self.b = Parameter(torch.zeros(out_dim))
else:
raise NotImplementedError
def forward(self, x):
if self.rf == 1:
size_out = x.size()[:-1] + (self.out_dim,)
x = torch.addmm(self.b, x.view(-1, x.size(-1)), self.w)
x = x.view(*size_out)
else:
raise NotImplementedError
return x
class LayerNorm(nn.Module):
"Construct a layernorm module in the OpenAI style (epsilon inside the square root)."
def __init__(self, n_embd, e=1e-5):
super(LayerNorm, self).__init__()
self.g = nn.Parameter(torch.ones(n_embd))
self.b = nn.Parameter(torch.zeros(n_embd))
self.e = e
def forward(self, x):
mu = x.mean(-1, keepdim=True)
sigma = (x - mu).pow(2).mean(-1, keepdim=True)
x = (x - mu) / torch.sqrt(sigma + self.e)
return self.g * x + self.b
class MLP(nn.Module):
def __init__(self, n_state, n_embd, acf='relu'):
super(MLP, self).__init__()
n_embd = n_embd
self.c_fc = Conv1D(n_state, 1, n_embd)
self.c_proj = Conv1D(n_embd, 1, n_state)
self.act = ACT_FNS[acf]
self.dropout = nn.Dropout(0.1)
def forward(self, x):
hidden1 = self.act(self.c_fc(x))
hidden2 = self.c_proj(hidden1)
return self.dropout(hidden2)
class Block(nn.Module):
def __init__(self, n_head, win_len, n_embd, scale, q_len, sub_len, additional_params: Dict):
super(Block, self).__init__()
n_embd = n_embd
self.attn = Attention(n_head, n_embd, win_len, scale, q_len, sub_len, **additional_params)
self.ln_1 = LayerNorm(n_embd)
self.mlp = MLP(4 * n_embd, n_embd)
self.ln_2 = LayerNorm(n_embd)
def forward(self, x):
attn = self.attn(x)
ln1 = self.ln_1(x + attn)
mlp = self.mlp(ln1)
hidden = self.ln_2(ln1 + mlp)
return hidden
class TransformerModel(nn.Module):
""" Transformer model """
def __init__(self, n_time_series, n_head, sub_len, num_layer, n_embd,
forecast_history: int, dropout: float, scale_att, q_len, additional_params: Dict, seq_num=None):
super(TransformerModel, self).__init__()
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.input_dim = n_time_series
self.n_head = n_head
self.seq_num = None
if seq_num:
self.seq_num = seq_num
self.id_embed = nn.Embedding(seq_num, n_embd)
nn.init.normal_(self.id_embed.weight, std=0.02)
self.n_embd = n_embd
self.win_len = forecast_history
# The following is the implementation of this paragraph
""" For positional encoding in Transformer, we use learnable position embedding.
For covariates, following [3], we use all or part of year, month, day-of-the-week,
hour-of-the-day, minute-of-the-hour, age and time-series-ID according to the granularities of datasets.
age is the distance to the first observation in that time series [3]. Each of them except time series
ID has only one dimension and is normalized to have zero mean and unit variance (if applicable).
"""
self.po_embed = nn.Embedding(forecast_history, n_embd)
self.drop_em = nn.Dropout(dropout)
block = Block(n_head, forecast_history, n_embd + n_time_series, scale=scale_att,
q_len=q_len, sub_len=sub_len, additional_params=additional_params)
self.blocks = nn.ModuleList([copy.deepcopy(block) for _ in range(num_layer)])
nn.init.normal_(self.po_embed.weight, std=0.02)
def forward(self, series_id: int, x: torch.Tensor):
"""Runs forward pass of the DecoderTransformer model.
:param series_id: ID of the time series
:type series_id: int
:param x: [description]
:type x: torch.Tensor
:return: [description]
:rtype: [type]
"""
batch_size = x.size(0)
length = x.size(1) # (Batch_size, length, input_dim)
embedding_sum = torch.zeros(batch_size, length, self.n_embd).to(self.device)
if self.seq_num:
embedding_sum = torch.zeros(batch_size, length)
embedding_sum.fill_(series_id).type(torch.LongTensor).to(self.device)
embedding_sum = self.id_embed(embedding_sum)
print("shape below")
print(embedding_sum.shape)
print(x.shape)
print(x.series_id)
position = torch.tensor(torch.arange(length), dtype=torch.long).to(self.device)
po_embedding = self.po_embed(position)
embedding_sum[:] = po_embedding
x = torch.cat((x, embedding_sum), dim=2)
for block in self.blocks:
x = block(x)
return x
class DecoderTransformer(nn.Module):
def __init__(self, n_time_series: int, n_head: int, num_layer: int,
n_embd: int, forecast_history: int, dropout: float, q_len: int, additional_params: Dict,
activation="Softmax", forecast_length: int = None, scale_att: bool = False, seq_num=None,
sub_len=1, mu=None):
"""
Args:
n_time_series: Number of time series present in input
n_head: Number of heads in the MultiHeadAttention mechanism
seq_num: The number of targets to forecast
sub_len: sub_len of the sparse attention
num_layer: The number of transformer blocks in the model.
n_embd: The dimention of Position embedding and time series ID embedding
forecast_history: The number of historical steps fed into the time series model
dropout: The dropout for the embedding of the model.
additional_params: Additional parameters used to initalize the attention model. Can inc
"""
super(DecoderTransformer, self).__init__()
self.transformer = TransformerModel(n_time_series, n_head, sub_len, num_layer, n_embd,
forecast_history, dropout, scale_att, q_len, additional_params)
self.softplus = nn.Softplus()
self.mu = torch.nn.Linear(n_time_series + n_embd, 1, bias=True)
self.sigma = torch.nn.Linear(n_time_series + n_embd, 1, bias=True)
self._initialize_weights()
self.mu_mode = mu
self.forecast_len_layer = None
if forecast_length:
self.forecast_len_layer = nn.Linear(forecast_history, forecast_length)
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv1d):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def forward(self, x: torch.Tensor, series_id: int = None):
"""
Args:
x: Tensor of dimension (batch_size, seq_len, number_of_time_series)
series_id: Optional id of the series in the dataframe. Currently not supported
Returns:
Case 1: tensor of dimension (batch_size, forecast_length)
Case 2: GLoss sigma and mu: tuple of ((batch_size, forecast_history, 1), (batch_size, forecast_history, 1))
"""
h = self.transformer(series_id, x)
mu = self.mu(h)
sigma = self.sigma(h)
if self.mu_mode:
sigma = self.softplus(sigma)
return mu, sigma
if self.forecast_len_layer:
# Swap to (batch_size, 1, features) for linear layer
sigma = sigma.permute(0, 2, 1)
# Output (batch_size, forecast_len_)
sigma = self.forecast_len_layer(sigma).permute(0, 2, 1)
return sigma.squeeze(2)