-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathrotate_train.py
351 lines (285 loc) · 12.6 KB
/
rotate_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import argparse
import os
import sys
from argparse import Namespace
from tempfile import TemporaryDirectory
import numpy as np
import torch
import torch.nn.functional as F
import wandb
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T
from tqdm.auto import tqdm
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from models.STAR.lib import utility
from models.Encoders import RotateModel
from models.Net import Net
from models.Net import iresnet100
from models.encoder4editing.utils.model_utils import setup_model, get_latents
from utils.bicubic import BicubicDownSample
from utils.train import image_grid, WandbLogger, seed_everything, toggle_grad
class MovingAverageLoss:
def __init__(self, weights: dict, alpha=0.02):
self.alpha = alpha
self.weights = weights
self.vals = {}
def reset(self):
self.vals = {}
def update(self, cur_vals):
for key, val in cur_vals.items():
self.vals[key] = self.alpha * val + (1 - self.alpha) * self.vals.get(key, val)
def calc_loss(self, losses):
loss = 0.
for key, val in losses.items():
loss += self.weights.get(key, 1) * val / self.vals.get(key, 1)
return loss
class Trainer:
def __init__(self,
model=None,
args=None,
optimizer=None,
scheduler=None,
train_dataloader=None,
test_dataloader=None,
logger=None
):
self.model = model
self.args = args
self.optimizer = optimizer
self.scheduler = scheduler
self.train_dataloader = train_dataloader
self.test_dataloader = test_dataloader
self.logger = logger
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.net = Net(Namespace(size=1024, ckpt='pretrained_models/StyleGAN/ffhq.pt', channel_multiplier=2, latent=512,
n_mlp=8, device=self.device))
self.e4e = setup_model('pretrained_models/encoder4editing/e4e_ffhq_encode.pt', 'cuda')[0]
self.arc_face = iresnet100()
self.arc_face.load_state_dict(torch.load("pretrained_models/ArcFace/backbone_r100.pth"))
self.arc_face.eval().cuda()
self.toArcface = T.Compose([
T.Resize((112, 112)),
T.Normalize(0.5, 0.5)
])
# init landmarks
config = utility.get_config(utility.landmarks_arg)
self.kp_extractor = utility.get_net(config)
model_path = utility.landmarks_arg.pretrained_weight
checkpoint = torch.load(model_path)
self.kp_extractor.load_state_dict(checkpoint["net"])
self.kp_extractor = self.kp_extractor.float().to('cuda')
self.kp_extractor.eval()
self.toLandmarks = T.Compose([
T.Resize((256, 256)),
T.Normalize(0.5, 0.5)
])
toggle_grad(self.arc_face, False)
toggle_grad(self.kp_extractor, False)
toggle_grad(self.net.generator, False)
toggle_grad(self.e4e.encoder, False)
self.downsample_512 = BicubicDownSample(factor=2)
self.downsample_256 = BicubicDownSample(factor=4)
self.downsample_128 = BicubicDownSample(factor=8)
self.MAL = MovingAverageLoss({'mse points to': 6, 'mse latents': 2})
self.best_loss = float('+inf')
def generate_key_points(self, batch):
_, _, landmarks = self.kp_extractor(self.toLandmarks(batch))
final_marks_2D = (landmarks[:, :76] + 1) / 2 * torch.tensor([256 - 1, 256 - 1]).to('cuda').view(1, 1, 2)
return final_marks_2D
@torch.no_grad()
def generate_latents(self, batch):
return get_latents(self.e4e, batch)
def save_model(self, name, save_online=True):
with TemporaryDirectory() as tmp_dir:
model_state_dict = self.model.state_dict()
# delete pretrained clip
for key in list(model_state_dict.keys()):
if key.startswith("clip_model."):
del model_state_dict[key]
torch.save({'model_state_dict': model_state_dict}, f'{tmp_dir}/{name}.pth')
self.logger.save(f'{tmp_dir}/{name}.pth', save_online)
def load_model(self, checkpoint_path):
self.model.load_state_dict(torch.load(checkpoint_path)['model_state_dict'], strict=False)
def calc_loss(self,
I_to,
I_from,
key_points_to,
latents_from,
latents_to,
ret_images=False,
normalize=True
):
# rotate
rotate_to = self.model(latents_from[:, :6], latents_to[:, :6])
latent_in = torch.cat((rotate_to, latents_from[:, 6:]), axis=1)
I_G_to, _ = self.net.generator([latent_in], input_is_latent=True, return_latents=False)
I_G_to_0_1 = ((I_G_to + 1) / 2)
I_gen_to = self.downsample_256(I_G_to_0_1).clip(0, 1)
# key_point_loss
key_points_gen_to = self.generate_key_points(I_gen_to)
key_point_loss_to = F.mse_loss(key_points_gen_to, key_points_to)
# arcface loss
gen_embed = self.arc_face(self.toArcface(I_gen_to))
gt_embed = self.arc_face(self.toArcface(I_from))
arc_face_loss = 20 * (1 - F.cosine_similarity(gen_embed, gt_embed)).mean()
losses = {
'mse points to': key_point_loss_to,
'arc face': arc_face_loss
}
if normalize:
losses['loss'] = self.MAL.calc_loss(losses)
else:
losses['loss'] = sum(losses.values())
if ret_images:
return losses['loss'], {key: val.item() for key, val in losses.items()}, I_gen_to, latent_in
else:
return losses['loss'], {key: val.item() for key, val in losses.items()}
def calc_hair_loss(self,
latents_from,
latents_to,
ret_images=False,
normalize=True
):
# rotate
rotate_to = self.model(latents_from[:, :6], latents_to[:, :6])
mse_latents = 300 * F.mse_loss(rotate_to, latents_to[:, :6])
losses = {
'mse latents': mse_latents
}
if normalize:
losses['loss'] = self.MAL.calc_loss(losses)
else:
losses['loss'] = sum(losses.values())
if ret_images:
latent_in = torch.cat((rotate_to, latents_from[:, 6:]), axis=1)
I_G_to, _ = self.net.generator([latent_in], input_is_latent=True, return_latents=False)
I_G_to_0_1 = ((I_G_to + 1) / 2)
I_gen_to = self.downsample_256(I_G_to_0_1).clip(0, 1)
return losses['loss'], {key: val.item() for key, val in losses.items()}, I_gen_to
else:
return losses['loss'], {key: val.item() for key, val in losses.items()}
def train_one_epoch(self):
self.model.to(self.device).train()
sum_losses = lambda x, y: {key: y.get(key, 0) + x.get(key, 0) for key in set(x.keys()) | set(y.keys())}
dataloader_to = iter(self.train_dataloader)
for batch in tqdm(self.train_dataloader):
I_from, key_points_from, latents_from = map(lambda x: x.to(self.device), batch)
I_to, key_points_to, latents_to = map(lambda x: x.to(self.device), next(dataloader_to))
self.optimizer.zero_grad()
loss, info, _, gen_latent = self.calc_loss(
I_to,
I_from,
key_points_to,
latents_from,
latents_to,
ret_images=True
)
if self.args.use_hair_loss:
hair_loss, info2 = self.calc_hair_loss(
gen_latent,
latents_from
)
loss += hair_loss
info = sum_losses(info, info2)
loss.backward()
self.MAL.update(info)
total_norm = torch.nn.utils.clip_grad_norm_(self.model.parameters(), 5)
self.optimizer.step()
self.logger.next_step()
for key, val in info.items():
self.logger.log(key, val)
self.logger.log('grad', total_norm.item())
@torch.no_grad()
def validate(self):
self.model.to(self.device).eval()
sum_losses = lambda x, y: {key: y.get(key, 0) + x.get(key, 0) for key in set(x.keys()) | set(y.keys())}
files = []
losses = {}
for batch in tqdm(self.test_dataloader):
I_from, key_points_from, latents_from, \
I_to, key_points_to, latents_to, = map(lambda x: x.to(self.device), batch)
bsz = I_from.size(0)
loss, info, I_gen_to, gen_latent = self.calc_loss(
I_to,
I_from,
key_points_to,
latents_from,
latents_to,
ret_images=True,
normalize=False
)
if args.use_hair_loss:
loss, info2, I_gen_to_rec = self.calc_hair_loss(
gen_latent,
latents_from,
ret_images=True,
normalize=False
)
losses = sum_losses(losses, info2)
else:
I_G_from, _ = self.net.generator([latents_from], input_is_latent=True, return_latents=False)
I_G_from_0_1 = ((I_G_from + 1) / 2)
I_gen_to_rec = self.downsample_256(I_G_from_0_1).clip(0, 1)
losses = sum_losses(losses, info)
for k in range(bsz):
files.append([I_from[k].cpu(), I_gen_to_rec[k].cpu(), I_gen_to[k].cpu(), I_to[k].cpu()])
for key, val in losses.items():
val /= len(self.test_dataloader)
self.logger.log(f'val {key}', val)
np.random.seed(1927)
idxs = np.random.choice(len(files), size=min(len(files), 100), replace=False)
images_to_log = [image_grid(list(map(T.functional.to_pil_image, files[idx])), 1, 4) for idx in idxs]
self.logger.log('val images', [wandb.Image(image) for image in images_to_log])
return losses['loss'] / len(self.test_dataloader)
def train_loop(self, epochs):
# self.validate()
for epoch in range(epochs):
self.train_one_epoch()
loss = self.validate()
self.save_model(f'rotate_{epoch}', save_online=False)
self.save_model('last')
if loss <= self.best_loss:
self.best_loss = loss
self.save_model(f'best', save_online=False)
class Rotate_dataset(Dataset):
def __init__(self, tensors_images, key_points, latents, is_test=False):
super().__init__()
self.tensors_images = tensors_images
self.key_points = key_points
self.latents = latents
self.is_test = is_test
def __len__(self):
return len(self.tensors_images)
def __get_elem__(self, idx):
return self.tensors_images[idx], self.key_points[idx], self.latents[idx]
def __getitem__(self, idx):
if self.is_test:
return *self.__get_elem__(idx), *self.__get_elem__(-idx)
else:
return self.__get_elem__(idx)
def main(args):
seed_everything()
data = list(torch.load(args.dataset).values())
X_train, X_test = train_test_split(list(zip(data[0], data[1], data[2])), test_size=512, random_state=42)
train_dataset = Rotate_dataset(*list(zip(*X_train)))
test_dataset = Rotate_dataset(*list(zip(*X_test)), is_test=True)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, pin_memory=True, shuffle=True,
drop_last=True, num_workers=4)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, pin_memory=True, shuffle=False,
num_workers=4)
logger = WandbLogger(name=args.name_run, project='HairFast-Rotate')
logger.start_logging()
logger.save(__file__)
model = RotateModel()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=0.000001)
trainer = Trainer(model, args, optimizer, None, train_dataloader, test_dataloader, logger)
trainer.train_loop(1000)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Rotate trainer')
parser.add_argument('--name_run', type=str, default='test')
parser.add_argument('--dataset', type=str, default='input/rotate_dataset.pkl')
parser.add_argument('--use_hair_loss', action='store_false')
parser.add_argument('--batch_size', type=int, default=16)
args = parser.parse_args()
main(args)