-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathpp_train.py
386 lines (304 loc) · 15.7 KB
/
pp_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import argparse
import os
import random
import sys
from argparse import Namespace
from pathlib import Path
from tempfile import TemporaryDirectory
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import wandb
from PIL import Image
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T
from tqdm.auto import tqdm
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from losses.pp_losses import LossBuilder, LossBuilderMulti
from models.Encoders import ModulationModule, FeatureiResnet, FeatureEncoderMult
from models.Net import Net
from models.face_parsing.model import BiSeNet, seg_mean, seg_std
from models.stylegan2 import dnnlib
from models.stylegan2.model import PixelNorm
from utils.bicubic import BicubicDownSample
from utils.image_utils import DilateErosion
from utils.train import image_grid, WandbLogger, toggle_grad, _LegacyUnpickler, seed_everything, get_fid_calc
class Trainer:
def __init__(self,
model=None,
args=None,
optimizer=None,
scheduler=None,
train_dataloader=None,
test_dataloader=None,
logger=None
):
self.model = model
self.args = args
self.optimizer = optimizer
self.scheduler = scheduler
self.train_dataloader = train_dataloader
self.test_dataloader = test_dataloader
self.logger = logger
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.dilate_erosion = DilateErosion(device=self.device)
self.normalize = T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
if self.model is not None:
self.fid_calc = get_fid_calc('input/fid.pkl', args.fid_dataset)
self.net = Net(Namespace(size=1024, ckpt='pretrained_models/StyleGAN/ffhq.pt', channel_multiplier=2, latent=512,
n_mlp=8, device=self.device))
with dnnlib.util.open_url("pretrained_models/StyleGAN/ffhq.pkl") as f:
data = _LegacyUnpickler(f).load()
self.discriminator = data['D'].cuda().eval()
self.disc_optim = torch.optim.Adam(self.discriminator.parameters(), lr=3e-4, betas=(0.9, 0.999), amsgrad=False,
weight_decay=0)
self.seg = BiSeNet(n_classes=16)
self.seg.to(self.device)
self.seg.load_state_dict(torch.load('pretrained_models/BiSeNet/seg.pth'))
self.seg.eval()
toggle_grad(self.discriminator, False)
toggle_grad(self.net.generator, False)
toggle_grad(self.seg, False)
self.downsample_512 = BicubicDownSample(factor=2)
self.downsample_256 = BicubicDownSample(factor=4)
self.downsample_128 = BicubicDownSample(factor=8)
self.best_loss = float('+inf')
if self.args is not None:
if self.args.pretrain:
self.LossBuilder = LossBuilder(
{'lpips_scale': 0.8, 'id': 0.1, 'landmark': 0, 'feat_rec': 0.01, 'adv': self.args.adv_coef})
else:
self.LossBuilder = LossBuilderMulti(
{'lpips_scale': 0.8, 'id': 0.1, 'landmark': 0.1, 'feat_rec': 0.01, 'adv': self.args.adv_coef,
'inpaint': self.args.inpaint})
self.cur_iter = 1
@torch.no_grad()
def generate_mask(self, I):
IM = (self.downsample_512(I) - seg_mean) / seg_std
down_seg, _, _ = self.seg(IM)
current_mask = torch.argmax(down_seg, dim=1).long().float()
HM_X = torch.where(current_mask == 10, torch.ones_like(current_mask), torch.zeros_like(current_mask))
HM_X = F.interpolate(HM_X.unsqueeze(1), size=(256, 256), mode='nearest')
HM_XD, HM_XE = self.dilate_erosion.mask(HM_X)
return HM_XD, HM_XE
def save_model(self, name, save_online=True):
with TemporaryDirectory() as tmp_dir:
model_state_dict = self.model.state_dict()
# delete pretrained clip
for key in list(model_state_dict.keys()):
if key.startswith("clip_model."):
del model_state_dict[key]
torch.save(
{'model_state_dict': model_state_dict, 'D': self.discriminator.state_dict(), 'cur_iter': self.cur_iter},
f'{tmp_dir}/{name}.pth')
self.logger.save(f'{tmp_dir}/{name}.pth', save_online)
def load_model(self, checkpoint_path):
checkpoint = torch.load(checkpoint_path)
if 'D' in checkpoint:
self.discriminator.load_state_dict(checkpoint['D'], strict=False)
if 'model_state_dict' in checkpoint:
self.model.load_state_dict(checkpoint['model_state_dict'], strict=False)
def train_one_epoch(self):
self.model.to(self.device).train()
for batch in tqdm(self.train_dataloader):
source, target, target_mask, HT_E = map(lambda x: x.to(self.device), batch)
source, source_1024 = self.downsample_256(source).clip(0, 1), self.normalize(source)
latent_s, latent_f = self.model(self.normalize(source), self.normalize(target), target_mask, HT_E)
gen_im_W, _ = self.net.generator([latent_s], input_is_latent=True, return_latents=False)
F_w, _ = self.net.generator([latent_s], input_is_latent=True, return_latents=False,
start_layer=0, end_layer=4)
if self.args.pretrain:
alpha = min(1, self.cur_iter / self.args.iter_before)
latent_f_gen = alpha * latent_f + (1 - alpha) * F_w
else:
latent_f_gen = latent_f
gen_im_F, _ = self.net.generator([latent_s], input_is_latent=True, return_latents=False,
start_layer=5, end_layer=8, layer_in=latent_f_gen)
losses = self.LossBuilder(source, target, target_mask, HT_E, gen_im_W, F_w, gen_im_F, latent_f)
if self.args.use_adv and self.cur_iter >= self.args.iter_before:
losses.update(self.LossBuilder.CalcAdvLoss(self.discriminator, gen_im_F))
losses['loss'] = sum(losses.values())
self.optimizer.zero_grad()
losses['loss'].backward()
total_norm = torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.5)
self.optimizer.step()
if self.args.use_adv and self.cur_iter >= self.args.iter_before:
if self.cur_iter == self.args.iter_before:
print('Start scripts discr')
toggle_grad(self.discriminator, True)
self.discriminator.train()
disc_loss = self.LossBuilder.CalcDisLoss(self.discriminator, source_1024, gen_im_F.detach())
if self.cur_iter % self.args.d_reg_every:
disc_loss.update(self.LossBuilder.CalcR1Loss(self.discriminator, source_1024))
total_loss = sum(disc_loss.values())
self.disc_optim.zero_grad()
total_loss.backward()
total_norm_d = torch.nn.utils.clip_grad_norm_(self.discriminator.parameters(), 0.5)
disc_loss['grad disc'] = total_norm_d
self.disc_optim.step()
toggle_grad(self.discriminator, False)
self.discriminator.eval()
losses.update(disc_loss)
losses['scripts grad'] = total_norm
self.logger.next_step()
self.logger.log_scalars({f'scripts {key}': val for key, val in losses.items()})
self.cur_iter += 1
@torch.no_grad()
def validate(self):
self.model.to(self.device).eval()
sum_losses = lambda x, y: {key: y.get(key, 0) + x.get(key, 0) for key in set(x.keys()) | set(y.keys())}
files = []
val_losses = {}
to_299 = T.Resize((299, 299))
images_to_fid = []
for batch in tqdm(self.test_dataloader):
source, target, target_mask, HT_E = map(lambda x: x.to(self.device), batch)
source = self.downsample_256(source).clip(0, 1)
bsz = source.size(0)
latent_s, latent_f = self.model(self.normalize(source), self.normalize(target), target_mask, HT_E)
gen_im_W, _ = self.net.generator([latent_s], input_is_latent=True, return_latents=False)
F_w, _ = self.net.generator([latent_s], input_is_latent=True, return_latents=False,
start_layer=0, end_layer=4)
gen_im_F, _ = self.net.generator([latent_s], input_is_latent=True, return_latents=False,
start_layer=5, end_layer=8, layer_in=latent_f)
losses = self.LossBuilder(source, target, target_mask, HT_E, gen_im_W, F_w, gen_im_F, latent_f)
losses['loss'] = sum(losses.values())
gen_w_256 = self.downsample_256((gen_im_W + 1) / 2).clip(0, 1)
gen_f_256 = self.downsample_256((gen_im_F + 1) / 2).clip(0, 1)
images_to_fid.append(to_299((gen_im_F + 1) / 2).clip(0, 1))
val_losses = sum_losses(val_losses, losses)
for k in range(bsz):
files.append([source[k].cpu(), target[k].cpu(), gen_w_256[k].cpu(), gen_f_256[k].cpu()])
val_losses['FID CLIP'] = self.fid_calc(torch.cat(images_to_fid))
for key, val in val_losses.items():
if key != 'FID CLIP':
val = val.item() / len(self.test_dataloader)
self.logger.log_scalars({f'val {key}': val})
np.random.seed(1927)
idxs = np.random.choice(len(files), size=min(len(files), 100), replace=False)
images_to_log = [image_grid(list(map(T.functional.to_pil_image, files[idx])), 1, len(files[idx])) for idx in
idxs]
self.logger.log_scalars({'val images': [wandb.Image(image) for image in images_to_log]})
return val_losses['loss']
def train_loop(self, epochs):
self.validate()
for epoch in range(epochs):
self.train_one_epoch()
loss = self.validate()
self.save_model('last', save_online=False)
if loss <= self.best_loss:
self.best_loss = loss
self.save_model(f'best_{epoch}', save_online=False)
class PP_dataset(Dataset):
def __init__(self, source, target, target_mask, HT_E, is_test=False):
super().__init__()
self.source = source
self.target = target
self.target_mask = target_mask
self.HT_E = HT_E
self.is_test = is_test
def __len__(self):
return len(self.source)
def load_image(self, path):
return T.functional.to_tensor(Image.open(path))
def __transform__(self, img1, img2, mask1, mask2):
if self.is_test:
return img1, img2, mask1, mask2
if random.random() > 0.5:
img1 = T.functional.hflip(img1)
img2 = T.functional.hflip(img2)
mask1 = T.functional.hflip(mask1)
mask2 = T.functional.hflip(mask2)
return img1, img2, mask1, mask2
def __getitem__(self, idx):
return self.__transform__(self.load_image(self.source[idx]), self.target[idx], self.target_mask[idx],
self.HT_E[idx])
class PostProcessModel(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.encoder_face = FeatureEncoderMult(fs_layers=[9], opts=argparse.Namespace(
**{'arcface_model_path': "pretrained_models/ArcFace/backbone_ir50.pth"}))
if not self.args.finetune:
toggle_grad(self.encoder_face, False)
self.latent_avg = torch.load('pretrained_models/PostProcess/latent_avg.pt', map_location=torch.device('cuda'))
self.to_feature = FeatureiResnet([[1024, 2], [768, 2], [512, 2]])
if self.args.use_mod:
self.to_latent_1 = nn.ModuleList([ModulationModule(18, i == 4) for i in range(5)])
self.to_latent_2 = nn.ModuleList([ModulationModule(18, i == 4) for i in range(5)])
self.pixelnorm = PixelNorm()
else:
self.to_latent = nn.Sequential(nn.Linear(1024, 1024), nn.LayerNorm([1024]), nn.LeakyReLU(),
nn.Linear(1024, 512))
def forward(self, source, target, target_mask=None, *args, **kwargs):
s_face, [f_face] = self.encoder_face(source)
if self.args.pretrain:
return self.latent_avg + s_face, f_face
s_hair, [f_hair] = self.encoder_face(target)
if self.args.use_mod:
dt_latent_face = self.pixelnorm(s_face)
dt_latent_hair = self.pixelnorm(s_hair)
for mod_module in self.to_latent_1:
dt_latent_face = mod_module(dt_latent_face, s_hair)
for mod_module in self.to_latent_2:
dt_latent_hair = mod_module(dt_latent_hair, s_face)
finall_s = self.latent_avg + 0.1 * (dt_latent_face + dt_latent_hair)
else:
cat_s = torch.cat((s_face, s_hair), dim=-1)
finall_s = self.latent_avg + self.to_latent(cat_s)
if self.args.use_full:
cat_f = torch.cat((f_face, f_hair), dim=1)
else:
t_mask = F.interpolate(target_mask, size=(64, 64), mode='nearest')
cat_f = torch.cat((f_face * t_mask, f_hair * (1 - t_mask)), dim=1)
finall_f = self.to_feature(cat_f)
return finall_s, finall_f
def main(args):
seed_everything()
dataset = []
idx = 1
while os.path.isfile(args.dataset / f'pp_part_{idx}.dataset'):
batch_data = torch.load(args.dataset / f'pp_part_{idx}.dataset')
dataset.extend(batch_data)
idx += 1
X_train, X_test = train_test_split(dataset, test_size=1024, random_state=42)
train_dataset = PP_dataset(*list(zip(*X_train)))
test_dataset = PP_dataset(*list(zip(*X_test)), is_test=True)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=10, pin_memory=True,
shuffle=True,
drop_last=True)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=10, pin_memory=True,
shuffle=False)
logger = WandbLogger(name=args.name_run, project='HairFast-PostProcess')
logger.start_logging()
logger.save(__file__)
model = PostProcessModel(args)
if args.pretrain:
optimizer = torch.optim.Adam(model.parameters(), lr=2e-4, weight_decay=0)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=0)
trainer = Trainer(model, args, optimizer, None, train_dataloader, test_dataloader, logger)
if not args.pretrain:
trainer.load_model(args.checkpoint)
trainer.train_loop(1000)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Post Process trainer')
parser.add_argument('--name_run', type=str, default='test')
parser.add_argument('--FFHQ', type=Path)
parser.add_argument('--dataset', type=Path, default='input/pp_dataset')
parser.add_argument('--fid_dataset', type=str, default='input')
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--iter_before', type=int, default=10_000)
parser.add_argument('--d_reg_every', type=int, default=16)
parser.add_argument('--inpaint', type=float, default=0.)
parser.add_argument('--use_adv', action='store_true')
parser.add_argument('--adv_coef', type=float, default=0.05)
parser.add_argument('--checkpoint', type=str)
parser.add_argument('--use_mod', action='store_true')
parser.add_argument('--use_full', action='store_true')
parser.add_argument('--pretrain', action='store_true')
parser.add_argument('--finetune', action='store_true')
args = parser.parse_args()
main(args)