Skip to content

Latest commit

 

History

History
96 lines (82 loc) · 2.73 KB

README.md

File metadata and controls

96 lines (82 loc) · 2.73 KB

MLA

We release code and models of MLACLIP on multilingual image-text retrieval. The models are trained on CC300K and finetuned on Multi30K.

Requirments

torch >= 1.7.1
transformers
opencv-python

Pretrained models

The pretrained models (CLIP & M-BERT, for initialization) can be downloaded here

unzip pretrained_model.zip

Config & Checkpoint

Detail configuration files and checkpoints can be found here

unzip expr.zip

Data preparation

Download annotations and unzip it to ./dataset/

unzip dataset.zip

Conceptual Caption images can be crawled here. After crawled from the web, place all images under dataset/ConceptualCaption/images

CC300K are used to train the released models. This subset can be found here dataset/ConceptualCaption/cc300k.json

Flickr30K images can be requested here. Untar it to dataset/Multi30k

tar -xzvf flickr30k_images.tar.gz -C dataset/Multi30k

MSCOCO images can be downloaded and prepared with the following scripts:

wget -c http://images.cocodataset.org/zips/train2014.zip
wget -c http://images.cocodataset.org/zips/val2014.zip
wget -c http://images.cocodataset.org/zips/test2014.zip

mkdir -p dataset/MSCOCO/images

unzip -d dataset/MSCOCO/images http://images.cocodataset.org/zips/train2014.zip 
unzip -d dataset/MSCOCO/images http://images.cocodataset.org/zips/val2014.zip 
unzip -d dataset/MSCOCO/images http://images.cocodataset.org/zips/test2014.zip 

Train

# NLT stage
bash train.sh \
    expr/vitb32/NLT/config.json 0
# LE stage:
bash train.sh \
    expr/vitb32/LE/config.json 0

Finetune on En (m30k)

bash train.sh \
    expr/vitb32/finetune-en-m30k/config.json 0

Finetune on all (m30k)

bash train.sh \
    expr/vitb32/finetune-all-m30k/config.json 0

Evaluate on zero-shot:

bash inference.sh \
    expr/vitb32/LE/pytorch_model.bin.1 \
    expr/vitb32/LE/pytorch_model.bin.1 \
    m30k+coco \
    expr/vitb32/LE/eval_m30k+coco

Evaluate finetune-on-en

bash inference.sh \
    expr/vitb32/finetune-en-m30k/pytorch_model.bin.4 \
    expr/vitb32/LE/pytorch_model.bin.1 \
    m30k \
    expr/vitb32/finetune-en-m30k/eval_m30k

Evaluate finetune-on-all

bash inference.sh \
    expr/vitb32/finetune-en-m30k/pytorch_model.bin.4 \
    expr/vitb32/finetune-all-m30k/pytorch_model.bin.10000 \
    m30k \
    expr/vitb32/finetune-all-m30k/eval_m30k