-
Notifications
You must be signed in to change notification settings - Fork 452
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0d1dd63
commit bc314a3
Showing
4 changed files
with
143 additions
and
160 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
import os | ||
import json | ||
import argparse | ||
import os.path as osp | ||
|
||
import cv2 | ||
import numpy as np | ||
import supervision as sv | ||
import onnxruntime as ort | ||
from mmengine.utils import ProgressBar | ||
|
||
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator() | ||
LABEL_ANNOTATOR = sv.LabelAnnotator() | ||
MASK_ANNOTATOR = sv.MaskAnnotator() | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser('YOLO-World ONNX Demo') | ||
parser.add_argument('onnx', help='onnx file') | ||
parser.add_argument('image', help='image path, include image file or dir.') | ||
parser.add_argument( | ||
'text', | ||
help= | ||
'detecting texts (str, txt, or json), should be consistent with the ONNX model' | ||
) | ||
parser.add_argument('--output-dir', | ||
default='./output', | ||
help='directory to save output files') | ||
parser.add_argument('--device', | ||
default='cuda:0', | ||
help='device used for inference') | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def preprocess(image, size=(640, 640)): | ||
h, w = image.shape[:2] | ||
max_size = max(h, w) | ||
scale_factor = size[0] / max_size | ||
pad_h = (max_size - h) // 2 | ||
pad_w = (max_size - w) // 2 | ||
pad_image = np.zeros((max_size, max_size, 3), dtype=image.dtype) | ||
pad_image[pad_h:h + pad_h, pad_w:w + pad_w] = image | ||
image = cv2.resize(pad_image, size, | ||
interpolation=cv2.INTER_LINEAR).astype('float32') | ||
image /= 255.0 | ||
image = image[None] | ||
return image, scale_factor, (pad_h, pad_w) | ||
|
||
|
||
def visualize(image, bboxes, labels, scores, texts): | ||
detections = sv.Detections(xyxy=bboxes, class_id=labels, confidence=scores) | ||
labels = [ | ||
f"{texts[class_id][0]} {confidence:0.2f}" for class_id, confidence in | ||
zip(detections.class_id, detections.confidence) | ||
] | ||
|
||
image = BOUNDING_BOX_ANNOTATOR.annotate(image, detections) | ||
image = LABEL_ANNOTATOR.annotate(image, detections, labels=labels) | ||
return image | ||
|
||
|
||
def inference(ort_session, image_path, texts, output_dir, size=(640, 640)): | ||
ori_image = cv2.imread(image_path) | ||
h, w = ori_image.shape[:2] | ||
image, scale_factor, pad_param = preprocess(ori_image[:, :, [2, 1, 0]], | ||
size) | ||
input_ort = ort.OrtValue.ortvalue_from_numpy(image.transpose((0, 3, 1, 2))) | ||
results = ort_session.run(["num_dets", "labels", "scores", "boxes"], | ||
{"images": input_ort}) | ||
num_dets, labels, scores, bboxes = results | ||
num_dets = num_dets[0][0] | ||
labels = labels[0, :num_dets] | ||
scores = scores[0, :num_dets] | ||
bboxes = bboxes[0, :num_dets] | ||
|
||
bboxes -= np.array( | ||
[pad_param[1], pad_param[0], pad_param[1], pad_param[0]]) | ||
bboxes /= scale_factor | ||
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, w) | ||
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, w) | ||
bboxes = bboxes.round().astype('int') | ||
|
||
image_out = visualize(ori_image, bboxes, labels, scores, texts) | ||
cv2.imwrite(osp.join(output_dir, osp.basename(image_path)), image_out) | ||
return image_out | ||
|
||
|
||
def main(): | ||
|
||
args = parse_args() | ||
onnx_file = args.onnx | ||
# init ONNX session | ||
ort_session = ort.InferenceSession( | ||
onnx_file, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | ||
print("Init ONNX Runtime session") | ||
output_dir = "onnx_outputs" | ||
if not osp.exists(output_dir): | ||
os.mkdir(output_dir) | ||
|
||
# load images | ||
if not osp.isfile(args.image): | ||
images = [ | ||
osp.join(args.image, img) for img in os.listdir(args.image) | ||
if img.endswith('.png') or img.endswith('.jpg') | ||
] | ||
else: | ||
images = [args.image] | ||
|
||
if args.text.endswith('.txt'): | ||
with open(args.text) as f: | ||
lines = f.readlines() | ||
texts = [[t.rstrip('\r\n')] for t in lines] | ||
elif args.text.endswith('.json'): | ||
texts = json.load(open(args.text)) | ||
else: | ||
texts = [[t.strip()] for t in args.text.split(',')] | ||
|
||
print("Start to inference.") | ||
progress_bar = ProgressBar(len(images)) | ||
for img in images: | ||
inference(ort_session, img, texts, output_dir=output_dir) | ||
progress_bar.update() | ||
print("Finish inference") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,8 +1,4 @@ | ||
onnx==1.15.0 | ||
onnxruntime==1.17.1 | ||
onnx-simplifier==0.4.33 | ||
onnx_graphsurgeon | ||
simple_onnx_processing_tools | ||
tensorflow==2.15.0 | ||
psutil==5.9.5 | ||
ml_dtypes==0.2.0 | ||
supervision | ||
onnx | ||
onnxruntime | ||
onnxsim |