-
Notifications
You must be signed in to change notification settings - Fork 449
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
da0fcb0
commit 2e0d8fb
Showing
30 changed files
with
852 additions
and
1,027 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
199 changes: 199 additions & 0 deletions
199
...in/yolo_world_v2_x_vlpan_bn_2e-3_100e_4x8gpus_obj365v1_goldg_train_1280ft_lvis_minival.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
_base_ = ('../../third_party/mmyolo/configs/yolov8/' | ||
'yolov8_x_syncbn_fast_8xb16-500e_coco.py') | ||
custom_imports = dict(imports=['yolo_world'], | ||
allow_failed_imports=False) | ||
|
||
# hyper-parameters | ||
num_classes = 1203 | ||
num_training_classes = 80 | ||
max_epochs = 100 # Maximum training epochs | ||
close_mosaic_epochs = 2 | ||
save_epoch_intervals = 2 | ||
text_channels = 512 | ||
neck_embed_channels = [128, 256, _base_.last_stage_out_channels // 2] | ||
neck_num_heads = [4, 8, _base_.last_stage_out_channels // 2 // 32] | ||
base_lr = 2e-3 | ||
weight_decay = 0.05 / 2 | ||
train_batch_size_per_gpu = 16 | ||
text_model_name = '../pretrained_models/clip-vit-base-patch32-projection' | ||
# text_model_name = 'openai/clip-vit-base-patch32' | ||
img_scale = (1280, 1280) | ||
|
||
# model settings | ||
model = dict( | ||
type='YOLOWorldDetector', | ||
mm_neck=True, | ||
num_train_classes=num_training_classes, | ||
num_test_classes=num_classes, | ||
data_preprocessor=dict(type='YOLOWDetDataPreprocessor'), | ||
backbone=dict( | ||
_delete_=True, | ||
type='MultiModalYOLOBackbone', | ||
image_model={{_base_.model.backbone}}, | ||
text_model=dict( | ||
type='HuggingCLIPLanguageBackbone', | ||
model_name=text_model_name, | ||
frozen_modules=['all'])), | ||
neck=dict(type='YOLOWorldPAFPN', | ||
guide_channels=text_channels, | ||
embed_channels=neck_embed_channels, | ||
num_heads=neck_num_heads, | ||
block_cfg=dict(type='MaxSigmoidCSPLayerWithTwoConv')), | ||
bbox_head=dict(type='YOLOWorldHead', | ||
head_module=dict(type='YOLOWorldHeadModule', | ||
use_bn_head=True, | ||
embed_dims=text_channels, | ||
num_classes=num_training_classes)), | ||
train_cfg=dict(assigner=dict(num_classes=num_training_classes))) | ||
|
||
# dataset settings | ||
text_transform = [ | ||
dict(type='RandomLoadText', | ||
num_neg_samples=(num_classes, num_classes), | ||
max_num_samples=num_training_classes, | ||
padding_to_max=True, | ||
padding_value=''), | ||
dict(type='mmdet.PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip', | ||
'flip_direction', 'texts')) | ||
] | ||
train_pipeline = [ | ||
*_base_.pre_transform, | ||
dict(type='MultiModalMosaic', | ||
img_scale=img_scale, | ||
pad_val=114.0, | ||
pre_transform=_base_.pre_transform), | ||
dict( | ||
type='YOLOv5RandomAffine', | ||
max_rotate_degree=0.0, | ||
max_shear_degree=0.0, | ||
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale), | ||
max_aspect_ratio=_base_.max_aspect_ratio, | ||
border=(-img_scale[0] // 2, -img_scale[1] // 2), | ||
border_val=(114, 114, 114)), | ||
*_base_.last_transform[:-1], | ||
*text_transform, | ||
] | ||
train_pipeline_stage2 = [ | ||
*_base_.pre_transform, | ||
dict(type='YOLOv5KeepRatioResize', scale=img_scale), | ||
dict( | ||
type='LetterResize', | ||
scale=img_scale, | ||
allow_scale_up=True, | ||
pad_val=dict(img=114.0)), | ||
dict( | ||
type='YOLOv5RandomAffine', | ||
max_rotate_degree=0.0, | ||
max_shear_degree=0.0, | ||
scaling_ratio_range=(1 - _base_.affine_scale, 1 + _base_.affine_scale), | ||
max_aspect_ratio=_base_.max_aspect_ratio, | ||
border_val=(114, 114, 114)), | ||
*_base_.last_transform[:-1], | ||
*text_transform | ||
] | ||
|
||
obj365v1_train_dataset = dict( | ||
type='MultiModalDataset', | ||
dataset=dict( | ||
type='YOLOv5Objects365V1Dataset', | ||
data_root='data/objects365v1/', | ||
ann_file='annotations/objects365_train.json', | ||
data_prefix=dict(img='train/'), | ||
filter_cfg=dict(filter_empty_gt=False, min_size=32)), | ||
class_text_path='data/texts/obj365v1_class_texts.json', | ||
pipeline=train_pipeline) | ||
|
||
mg_train_dataset = dict(type='YOLOv5MixedGroundingDataset', | ||
data_root='data/mixed_grounding/', | ||
ann_file='annotations/final_mixed_train_no_coco.json', | ||
data_prefix=dict(img='gqa/images/'), | ||
filter_cfg=dict(filter_empty_gt=False, min_size=32), | ||
pipeline=train_pipeline) | ||
|
||
flickr_train_dataset = dict( | ||
type='YOLOv5MixedGroundingDataset', | ||
data_root='data/flickr/', | ||
ann_file='annotations/final_flickr_separateGT_train.json', | ||
data_prefix=dict(img='full_images/'), | ||
filter_cfg=dict(filter_empty_gt=True, min_size=32), | ||
pipeline=train_pipeline) | ||
|
||
train_dataloader = dict(batch_size=train_batch_size_per_gpu, | ||
collate_fn=dict(type='yolow_collate'), | ||
dataset=dict(_delete_=True, | ||
type='ConcatDataset', | ||
datasets=[ | ||
obj365v1_train_dataset, | ||
flickr_train_dataset, mg_train_dataset | ||
], | ||
ignore_keys=['classes', 'palette'])) | ||
|
||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='YOLOv5KeepRatioResize', scale=img_scale), | ||
dict( | ||
type='LetterResize', | ||
scale=img_scale, | ||
allow_scale_up=False, | ||
pad_val=dict(img=114)), | ||
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'), | ||
dict(type='LoadText'), | ||
dict(type='mmdet.PackDetInputs', | ||
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', | ||
'scale_factor', 'pad_param', 'texts')) | ||
] | ||
|
||
coco_val_dataset = dict( | ||
_delete_=True, | ||
type='MultiModalDataset', | ||
dataset=dict(type='YOLOv5LVISV1Dataset', | ||
data_root='data/coco/', | ||
test_mode=True, | ||
ann_file='lvis/lvis_v1_minival_inserted_image_name.json', | ||
data_prefix=dict(img=''), | ||
batch_shapes_cfg=None), | ||
class_text_path='data/texts/lvis_v1_class_texts.json', | ||
pipeline=test_pipeline) | ||
val_dataloader = dict(dataset=coco_val_dataset) | ||
test_dataloader = val_dataloader | ||
|
||
val_evaluator = dict(type='mmdet.LVISMetric', | ||
ann_file='data/coco/lvis/lvis_v1_minival_inserted_image_name.json', | ||
metric='bbox') | ||
test_evaluator = val_evaluator | ||
|
||
# training settings | ||
default_hooks = dict(param_scheduler=dict(max_epochs=max_epochs), | ||
checkpoint=dict(interval=save_epoch_intervals, | ||
rule='greater')) | ||
custom_hooks = [ | ||
dict(type='EMAHook', | ||
ema_type='ExpMomentumEMA', | ||
momentum=0.0001, | ||
update_buffers=True, | ||
strict_load=False, | ||
priority=49), | ||
dict(type='mmdet.PipelineSwitchHook', | ||
switch_epoch=max_epochs - close_mosaic_epochs, | ||
switch_pipeline=train_pipeline_stage2) | ||
] | ||
train_cfg = dict(max_epochs=max_epochs, | ||
val_interval=10, | ||
dynamic_intervals=[((max_epochs - close_mosaic_epochs), | ||
_base_.val_interval_stage2)]) | ||
optim_wrapper = dict(optimizer=dict( | ||
_delete_=True, | ||
type='AdamW', | ||
lr=base_lr, | ||
weight_decay=weight_decay, | ||
batch_size_per_gpu=train_batch_size_per_gpu), | ||
paramwise_cfg=dict(bias_decay_mult=0.0, | ||
norm_decay_mult=0.0, | ||
custom_keys={ | ||
'backbone.text_model': | ||
dict(lr_mult=0.01), | ||
'logit_scale': | ||
dict(weight_decay=0.0) | ||
}), | ||
constructor='YOLOWv5OptimizerConstructor') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.