-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.py
55 lines (41 loc) · 1.39 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import glob
import os
import paddle
import cv2
import sys
from mpr_mdta_v8 import MPRNet_mdta_v8
from utils import load_pretrained_model, chop_forward
def inference(model, img):
print(img.shape)
model.eval()
img = paddle.to_tensor(img)
img /= 255.0
img = paddle.transpose(img, [2, 0, 1])
img = img.unsqueeze(0)
img_out = chop_forward(model, img)
img_out = img_out.squeeze(0)
img_out = img_out * 255.0
img_out = paddle.clip(img_out, 0, 255)
img_out = paddle.transpose(img_out, [1, 2, 0])
img_out = img_out.numpy()
return img_out
def main(src_image_dir, save_dir):
# load model
generator = MPRNet_mdta_v8(n_feat=64)
load_pretrained_model(generator, "iter_195000_weight.pdparams")
generator.eval()
im_files = glob.glob(os.path.join(src_image_dir, "*.png"))
for idx, im in enumerate(im_files):
# print("{} | {}".format(idx+1, len(im_files)))
img = cv2.imread(im)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_out = inference(generator, img)
img_out = cv2.cvtColor(img_out, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(save_dir, im.split('/')[-1]), img_out)
if __name__ == '__main__':
assert len(sys.argv) == 3
src_image_dir = sys.argv[1]
save_dir = sys.argv[2]
if not os.path.exists(save_dir):
os.makedirs(save_dir)
main(src_image_dir, save_dir)