-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrain.py
191 lines (159 loc) · 6.06 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import torch
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
from torchvision.utils import save_image
import albumentations as A
from albumentations.pytorch import ToTensorV2
from tqdm import tqdm
# from torchsummary import summary
from Utils import save_checkpoint, load_checkpoint
from Dataset import ABDataset
from Model import Generator, Discriminator
import gc
gc.collect()
torch.cuda.empty_cache()
def train_fn(disc_A, disc_B, gen_A, gen_B, loader, opt_disc, opt_gen, l1, mse, d_scaler, g_scaler, epoch):
global count
avg_dloss = 0
avg_gloss = 0
loop = tqdm(loader, leave=True)
for idx, (a, b) in enumerate(loop):
a = a.to(DEVICE)
b = b.to(DEVICE)
with torch.cuda.amp.autocast():
fake_a = gen_A(b)
D_A_real = disc_A(a)
D_A_fake = disc_A(fake_a.detach())
D_A_real_loss = mse(D_A_real, torch.ones_like(D_A_real))
D_A_fake_loss = mse(D_A_fake, torch.zeros_like(D_A_fake))
D_A_loss = D_A_real_loss + D_A_fake_loss
fake_b = gen_B(a)
D_B_real = disc_B(b)
D_B_fake = disc_B(fake_b.detach())
D_B_real_loss = mse(D_B_real, torch.ones_like(D_B_real))
D_B_fake_loss = mse(D_B_fake, torch.zeros_like(D_B_fake))
D_B_loss = D_B_real_loss + D_B_fake_loss
D_loss = (D_A_loss + D_B_loss)/2
opt_disc.zero_grad()
d_scaler.scale(D_loss).backward()
d_scaler.step(opt_disc)
d_scaler.update()
with torch.cuda.amp.autocast():
D_A_fake = disc_A(fake_a)
D_B_fake = disc_B(fake_b)
loss_G_A = mse(D_A_fake, torch.ones_like(D_A_fake))
loss_G_B = mse(D_B_fake, torch.ones_like(D_B_fake))
cycle_b = gen_B(fake_a)
cycle_a = gen_A(fake_b)
cycle_b_loss = l1(b, cycle_b)
cycle_a_loss = l1(a, cycle_a)
identity_b = gen_B(b)
identity_a = gen_A(a)
identity_b_loss = l1(b, identity_b)
identity_a_loss = l1(a, identity_a)
G_loss = (
loss_G_B
+ loss_G_A
+ cycle_b_loss * LAMBDA_CYCLE
+ cycle_a_loss * LAMBDA_CYCLE
+ identity_a_loss * LAMBDA_IDENTITY
+ identity_b_loss * LAMBDA_IDENTITY
)
avg_dloss += D_loss.item()
avg_gloss += G_loss.item()
opt_gen.zero_grad()
g_scaler.scale(G_loss).backward()
g_scaler.step(opt_gen)
g_scaler.update()
if idx % 100 == 0:
save_image(fake_a*0.5+0.5, f"{path}/Generated from HQ/{count}_fake.png")
save_image(fake_b*0.5+0.5, f"{path}/Generated from LQ/{count}_fake.png")
save_image(b*0.5+0.5, f"{path}/Generated from HQ/{count}_real.png")
save_image(a*0.5+0.5, f"{path}/Generated from LQ/{count}_real.png")
count += 1
loop.set_postfix(epoch=epoch+1, loss_g=avg_gloss/(idx+1), loss_d=avg_dloss/(idx+1))
def main():
disc_A = Discriminator().to(DEVICE)
disc_B = Discriminator().to(DEVICE)
gen_A = Generator(width=IMAGE_WIDTH, height=IMAGE_HEIGHT).to(DEVICE)
gen_B = Generator(width=IMAGE_WIDTH, height=IMAGE_HEIGHT).to(DEVICE)
opt_disc = optim.Adam(
list(disc_A.parameters()) + list(disc_B.parameters()),
lr=LEARNING_RATE,
betas=(0.5, 0.999),
)
opt_gen = optim.Adam(
list(gen_A.parameters()) + list(gen_B.parameters()),
lr=LEARNING_RATE,
betas=(0.5, 0.999),
)
L1 = nn.L1Loss()
mse = nn.MSELoss()
if LOAD_MODEL:
load_checkpoint(
CHECKPOINT_GEN_A, gen_A, opt_gen, LEARNING_RATE,
)
load_checkpoint(
CHECKPOINT_GEN_B, gen_B, opt_gen, LEARNING_RATE,
)
load_checkpoint(
CHECKPOINT_DISC_A, disc_A, opt_disc, LEARNING_RATE,
)
load_checkpoint(
CHECKPOINT_DISC_B, disc_B, opt_disc, LEARNING_RATE,
)
dataset = ABDataset(
root_a=TRAIN_DIR+"/LQ", root_b=TRAIN_DIR+"/HQ", transform=transforms
)
loader = DataLoader(
dataset,
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=NUM_WORKERS,
pin_memory=True
)
g_scaler = torch.cuda.amp.GradScaler()
d_scaler = torch.cuda.amp.GradScaler()
for epoch in range(NUM_EPOCHS):
train_fn(disc_A, disc_B, gen_A, gen_B, loader, opt_disc, opt_gen, L1, mse, d_scaler, g_scaler, epoch)
if SAVE_MODEL:
save_checkpoint(gen_A, opt_gen, filename=CHECKPOINT_GEN_A)
save_checkpoint(gen_B, opt_gen, filename=CHECKPOINT_GEN_B)
save_checkpoint(disc_A, opt_disc, filename=CHECKPOINT_DISC_A)
save_checkpoint(disc_B, opt_disc, filename=CHECKPOINT_DISC_B)
if __name__ == "__main__":
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
TRAIN_DIR = "datasets/EyeQ/train"
path = "Results"
BATCH_SIZE = 1
LEARNING_RATE = 1e-5
LAMBDA_IDENTITY = 10
LAMBDA_CYCLE = 10
NUM_WORKERS = 4
NUM_EPOCHS = 500
LOAD_MODEL = False
SAVE_MODEL = True
IMAGE_HEIGHT = 256
IMAGE_WIDTH = 256
CHECKPOINT_GEN_A = f"{path}/gena.pth.tar"
CHECKPOINT_GEN_B = f"{path}/genb.pth.tar"
CHECKPOINT_DISC_A = f"{path}/disca.pth.tar"
CHECKPOINT_DISC_B = f"{path}/discb.pth.tar"
count = 0
if not os.path.exists("Results"):
os.mkdir("Results")
os.mkdir("Results/Generated from HQ")
os.mkdir("Results/Generated from LQ")
transforms = A.Compose(
[
A.Resize(height=IMAGE_HEIGHT, width=IMAGE_WIDTH),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], max_pixel_value=255),
ToTensorV2(),
],
additional_targets={"image0": "image"},
)
main()