forked from osmr/imgclsmob
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
155 lines (127 loc) · 4.32 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import logging
import os
import numpy as np
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from .pytorchcv.model_provider import get_model
def prepare_pt_context(num_gpus,
batch_size):
use_cuda = (num_gpus > 0)
batch_size *= max(1, num_gpus)
return use_cuda, batch_size
def get_data_loader(data_dir,
batch_size,
num_workers):
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
jitter_param = 0.4
train_loader = torch.utils.data.DataLoader(
dataset=datasets.ImageFolder(
root=os.path.join(data_dir, 'train'),
transform=transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(
brightness=jitter_param,
contrast=jitter_param,
saturation=jitter_param),
transforms.ToTensor(),
normalize,
])),
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True)
val_loader = torch.utils.data.DataLoader(
dataset=datasets.ImageFolder(
root=os.path.join(data_dir, 'val'),
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True)
return train_loader, val_loader
def prepare_model(model_name,
classes,
use_pretrained,
pretrained_model_file_path,
use_cuda,
use_data_parallel=True):
kwargs = {'pretrained': use_pretrained,
'num_classes': classes}
net = get_model(model_name, **kwargs)
if pretrained_model_file_path:
assert (os.path.isfile(pretrained_model_file_path))
logging.info('Loading model: {}'.format(pretrained_model_file_path))
checkpoint = torch.load(
pretrained_model_file_path,
map_location=(None if use_cuda else 'cpu'))
if type(checkpoint) == dict:
net.load_state_dict(checkpoint['state_dict'])
else:
net.load_state_dict(checkpoint)
if use_data_parallel:
net = torch.nn.DataParallel(net)
if use_cuda:
net = net.cuda()
return net
def calc_net_weight_count(net):
net.train()
net_params = filter(lambda p: p.requires_grad, net.parameters())
weight_count = 0
for param in net_params:
weight_count += np.prod(param.size())
return weight_count
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(1.0 / batch_size))
return res
def validate(acc_top1,
acc_top5,
net,
val_data,
use_cuda):
net.eval()
acc_top1.reset()
acc_top5.reset()
with torch.no_grad():
for data, target in val_data:
if use_cuda:
target = target.cuda(non_blocking=True)
output = net(data)
prec1, prec5 = accuracy(output, target, topk=(1, 5))
acc_top1.update(prec1[0], data.size(0))
acc_top5.update(prec5[0], data.size(0))
top1 = acc_top1.avg.item()
top5 = acc_top5.avg.item()
return 1.0 - top1, 1.0 - top5