forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_test_artifacts.py
75 lines (60 loc) · 2.49 KB
/
process_test_artifacts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This helper computes the "ideal" number of nodes to use in circle CI.
For each job, we compute this parameter and pass it to the `generated_config.yaml`.
"""
import json
import math
import os
MAX_PARALLEL_NODES = 8 # TODO create a mapping!
AVERAGE_TESTS_PER_NODES = 5
def count_lines(filepath):
"""Count the number of lines in a file."""
try:
with open(filepath, "r") as f:
return len(f.read().split("\n"))
except FileNotFoundError:
return 0
def compute_parallel_nodes(line_count, max_tests_per_node=10):
"""Compute the number of parallel nodes required."""
num_nodes = math.ceil(line_count / AVERAGE_TESTS_PER_NODES)
if line_count < 4:
return 1
return min(MAX_PARALLEL_NODES, num_nodes)
def process_artifacts(input_file, output_file):
# Read the JSON data from the input file
with open(input_file, "r") as f:
data = json.load(f)
# Process items and build the new JSON structure
transformed_data = {}
for item in data.get("items", []):
if "test_list" in item["path"]:
key = os.path.splitext(os.path.basename(item["path"]))[0]
transformed_data[key] = item["url"]
parallel_key = key.split("_test")[0] + "_parallelism"
file_path = os.path.join("test_preparation", f"{key}.txt")
line_count = count_lines(file_path)
transformed_data[parallel_key] = compute_parallel_nodes(line_count)
# Remove the "generated_config" key if it exists
if "generated_config" in transformed_data:
del transformed_data["generated_config"]
# Write the transformed data to the output file
with open(output_file, "w") as f:
json.dump(transformed_data, f, indent=2)
if __name__ == "__main__":
input_file = "test_preparation/artifacts.json"
output_file = "test_preparation/transformed_artifacts.json"
process_artifacts(input_file, output_file)