forked from SonghyunYu/DIDN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcolor_train.py
209 lines (172 loc) · 8.26 KB
/
color_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse, os
import torch
import random
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from color_model import _NetG
import color_dataset
from color_dataset import DatasetFromHdf5
import glob, math, time
import numpy as np
import scipy.io as sio
from scipy.io.matlab.mio import loadmat
import h5py
from torchsummary import summary
# Training settings
parser = argparse.ArgumentParser(description="PyTorch DIDN Train")
parser.add_argument("--batchSize", type=int, default=16, help="Training batch size")
parser.add_argument("--nEpochs", type=int, default=50, help="Number of epochs to train for")
parser.add_argument("--lr", type=float, default=0.0001, help="Learning Rate. Default=0.0001")
parser.add_argument("--cuda", action="store_true", help="Use cuda?")
parser.add_argument("--resume", default="", type=str, help="Path to checkpoint (default: none)")
parser.add_argument("--start_epoch", default=1, type=int, help="Manual epoch number (useful on restarts)")
parser.add_argument("--threads", type=int, default=0, help="Number of threads for data loader to use, Default: 0")
parser.add_argument("--gpus", default="0", type=str, help="gpu ids (default: 0)")
def main():
global opt, model
opt = parser.parse_args()
opt.gpus = '0'
print(opt)
opt.cuda = True
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus
cuda = opt.cuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
opt.seed = random.randint(1, 10000)
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
cudnn.benchmark = True
print("===> Loading datasets")
train_set = DatasetFromHdf5("./data/training_RGB_5to50_uint8_samples.h5")
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True, pin_memory=True)
print("===> Building model")
model = _NetG()
criterion = nn.L1Loss()
print("===> Setting GPU")
if cuda:
model = model.cuda()
criterion = criterion.cuda()
summary(model, (3, 64, 64))
# optionally resume from a checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume, map_location=lambda storage, loc: storage)
opt.start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint['model'].state_dict())
del checkpoint
torch.cuda.empty_cache()
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
print("===> Setting Optimizer")
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
print("===> Training")
max_psnr = 0
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
max_psnr = train(training_data_loader, optimizer, model, criterion, epoch, max_psnr)
save_checkpoint(model, epoch, 'end', 'end_ep')
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR divided by 2 every 3 epochs"""
lr = optimizer.param_groups[0]["lr"]
if epoch % 3 == 1:
if epoch > 1:
lr = optimizer.param_groups[0]["lr"] / 2
return lr
def train(training_data_loader, optimizer, model, criterion, epoch, max_psnr):
lr = adjust_learning_rate(optimizer, epoch)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
print("Epoch = {}, lr = {}".format(epoch, optimizer.param_groups[0]["lr"]))
model.train()
for iteration, batch in enumerate(training_data_loader, 0):
batch = color_dataset.tensor_augmentation(batch) # data augmentation (random rotation / flip)
input, target = Variable(batch[0] / 255.), Variable(batch[1] / 255., requires_grad=False)
if opt.cuda:
input = input.cuda()
target = target.cuda()
loss = criterion(model(input), target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if iteration % 4000 == 0: # calculate validation PSNR every 4000 iteration.
print("===> Epoch[{}]({}/{}): Loss: {:.10f}".format(epoch, iteration, len(training_data_loader), loss.item()))
with torch.no_grad():
origin_list = glob.glob("./data/Val/Set5/original_mat_int/" + "*.*")
noisy_list50 = glob.glob("./data/Val/Set5/noisy_mat_s50_int/" + "*.*")
noisy_list30 = glob.glob("./data/Val/Set5/noisy_mat_s30_int/" + "*.*")
noisy_list10 = glob.glob("./data/Val/Set5/noisy_mat_s10_int/" + "*.*")
model.eval()
avg_psnr_predicted = [0, 0, 0]
avg_psnr_noisy = 0.0
ct = 0.0
for n in range(origin_list.__len__()):
origin_name = origin_list[n]
noisy_name50 = noisy_list50[n]
noisy_name30 = noisy_list30[n]
noisy_name10 = noisy_list10[n]
origin = sio.loadmat(origin_name)['origin']/255.
noisy_ = []
for i in range(3):
noisy_.append(np.zeros((origin.shape[2], origin.shape[0], origin.shape[1])))
out_ = np.zeros(origin.shape)
noisy = []
noisy.append(sio.loadmat(noisy_name50)['noisy']/255.)
noisy.append(sio.loadmat(noisy_name30)['noisy'] / 255.)
noisy.append(sio.loadmat(noisy_name10)['noisy'] / 255.)
origin = origin.astype(float)
psnr_noisy = output_psnr_mse(origin, noisy[0])
avg_psnr_noisy += psnr_noisy
for n in range(3):
for k in range(3):
noisy_[n][k, :, :] = noisy[n][: ,:, k]
noisy_[n] = Variable(torch.from_numpy(noisy_[n]).float()).view(1, 3, noisy_[n].shape[1], noisy_[n].shape[2])
if opt.cuda:
noisy_[n] = noisy_[n].cuda()
out = model(noisy_[n])
out = out.cpu()
out = out.data[0].numpy().astype(np.float32)
out[out < 0] = 0
out[out > 1] = 1
for k in range(3):
out_[:, :, k] = out[k, :, :] # 256, 256, 3
psnr_predicted = output_psnr_mse(origin, out_)
avg_psnr_predicted[n] += psnr_predicted
ct += 1
for n in range(3):
avg_psnr_predicted[n] = avg_psnr_predicted[n] / ct
avg_psnr_noisy = avg_psnr_noisy / ct
if iteration == 0:
print("PSNR_noisy=", avg_psnr_noisy)
print("PSNR_predicted_s50=", avg_psnr_predicted[0])
print("PSNR_predicted_s30=", avg_psnr_predicted[1])
print("PSNR_predicted_s10=", avg_psnr_predicted[2])
avg_psnr_avg = (avg_psnr_predicted[0]+avg_psnr_predicted[1]+avg_psnr_predicted[2])/3
if iteration == 0 and epoch == 1:
max_psnr = avg_psnr_avg
psnr_name = "%0.2f" % avg_psnr_avg
save_checkpoint(model, epoch, iteration, psnr_name)
else:
if max_psnr < avg_psnr_avg:
max_psnr = avg_psnr_avg
psnr_name = "%0.2f" % avg_psnr_avg
save_checkpoint(model, epoch, iteration, psnr_name)
model.train()
return max_psnr
def save_checkpoint(model, epoch,iteration, psnr_name):
model_out_path = "checkpoint/" + "model_{}db_".format(psnr_name) + "{}ep_".format(epoch) + "{}it_.pth".format(iteration)
state = {"epoch": epoch, "model": model}
if not os.path.exists("checkpoint/"):
os.makedirs("checkpoint/")
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
def output_psnr_mse(img_orig, img_out):
squared_error = np.square(img_orig - img_out)
mse = np.mean(squared_error)
psnr = 10 * np.log10(1.0 / mse)
return psnr
if __name__ == "__main__":
main()