-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathtrain_torch.py
94 lines (79 loc) · 2.94 KB
/
train_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from PIL import Image
import os
# Define the CNN architecture
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 5 * 5, 128)
self.fc2 = nn.Linear(128, 360) # 360 classes for 0-359 degrees rotation
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = self.pool(torch.relu(self.conv3(x)))
x = x.view(-1, 64 * 5 * 5)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# Define dataset class
class RotationDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.image_files = sorted(os.listdir(root_dir))
def __len__(self):
return len(self.image_files)
def __getitem__(self, idx):
img_name = self.image_files[idx]
img_path = os.path.join(self.root_dir, img_name)
image = Image.open(img_path).convert('RGB')
label = int(img_name.split('_')[-1].split('.')[0]) # Extract label from file name
# Ensure label is within bounds
label = label % 359 # Limit label to 0-358 range
if self.transform:
image = self.transform(image)
return image, label
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define transformations
transform = transforms.Compose([
transforms.Resize((40, 40)),
transforms.ToTensor(),
])
# Define dataset and dataloader
dataset = RotationDataset(root_dir='360', transform=transform)
dataloader = DataLoader(dataset, batch_size=64, shuffle=True)
# Initialize the model, loss function, and optimizer
model = CNN().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# Training loop
num_epochs = 100
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(dataloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward + backward + optimize
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# Print statistics
running_loss += loss.item()
if i % 100 == 99: # Print every 100 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
# Save the model
torch.save(model.state_dict(), 'rotate_model.pth')