Skip to content
This repository was archived by the owner on Dec 19, 2023. It is now read-only.

Commit e608c2f

Browse files
author
hanjr
committed
add 3d pose visualize
1 parent 1e9a6ae commit e608c2f

File tree

4 files changed

+439
-1
lines changed

4 files changed

+439
-1
lines changed
Lines changed: 44 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,44 @@
1+
linear_model/w1
2+
linear_model/b1
3+
linear_model/batch_normalization/beta
4+
linear_model/batch_normalization/gamma
5+
linear_model/batch_normalization/moving_mean
6+
linear_model/batch_normalization/moving_variance
7+
linear_model/two_linear_0/w2_0
8+
linear_model/two_linear_0/b2_0
9+
linear_model/two_linear_0/batch_normalization10/beta
10+
linear_model/two_linear_0/batch_normalization10/gamma
11+
linear_model/two_linear_0/batch_normalization10/moving_mean
12+
linear_model/two_linear_0/batch_normalization10/moving_variance
13+
linear_model/two_linear_0/w3_0
14+
linear_model/two_linear_0/b3_0
15+
linear_model/two_linear_0/batch_normalization20/beta
16+
linear_model/two_linear_0/batch_normalization20/gamma
17+
linear_model/two_linear_0/batch_normalization20/moving_mean
18+
linear_model/two_linear_0/batch_normalization20/moving_variance
19+
linear_model/two_linear_1/w2_1
20+
linear_model/two_linear_1/b2_1
21+
linear_model/two_linear_1/batch_normalization11/beta
22+
linear_model/two_linear_1/batch_normalization11/gamma
23+
linear_model/two_linear_1/batch_normalization11/moving_mean
24+
linear_model/two_linear_1/batch_normalization11/moving_variance
25+
linear_model/two_linear_1/w3_1
26+
linear_model/two_linear_1/b3_1
27+
linear_model/two_linear_1/batch_normalization21/beta
28+
linear_model/two_linear_1/batch_normalization21/gamma
29+
linear_model/two_linear_1/batch_normalization21/moving_mean
30+
linear_model/two_linear_1/batch_normalization21/moving_variance
31+
linear_model/two_linear_2/w2_2
32+
linear_model/two_linear_2/b2_2
33+
linear_model/two_linear_2/batch_normalization12/beta
34+
linear_model/two_linear_2/batch_normalization12/gamma
35+
linear_model/two_linear_2/batch_normalization12/moving_mean
36+
linear_model/two_linear_2/batch_normalization12/moving_variance
37+
linear_model/two_linear_2/w3_2
38+
linear_model/two_linear_2/b3_2
39+
linear_model/two_linear_2/batch_normalization22/beta
40+
linear_model/two_linear_2/batch_normalization22/gamma
41+
linear_model/two_linear_2/batch_normalization22/moving_mean
42+
linear_model/two_linear_2/batch_normalization22/moving_variance
43+
linear_model/w4
44+
linear_model/b4
Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,19 @@
1+
#! /usr/bin/python
2+
# -*- coding: utf-8 -*-
3+
4+
from tensorlayer.app.human_pose_estimation.common import DataReader, visualize_3D_pose, flip_data
5+
from tensorlayer.app.human_pose_estimation.LCN import CGCNN
6+
import numpy as np
7+
8+
datareader = DataReader()
9+
train_data, test_data = datareader.read_2d(which='scale', mode='gt', read_confidence=False)
10+
train_labels, test_labels = datareader.read_3d(which='scale', mode='gt')
11+
network = CGCNN(pretrained=True)
12+
test_data = flip_data(test_data)
13+
result = network(test_data, is_train=False)
14+
result = datareader.denormalize3D(np.asarray(result), which='scale')
15+
test_data = datareader.denormalize2D(test_data, which='scale')
16+
test_labels = datareader.denormalize3D(test_labels, which='scale')
17+
visualize_3D_pose(
18+
test_data, test_labels, result
19+
) # We plot 4 examples. You can modify this function according to your own needs.

examples/app_tutorials/tutorial_object_detection_yolov4_image.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,6 @@
1515
image = cv2.cvtColor(np.array(original_image), cv2.COLOR_BGR2RGB)
1616
net = computer_vision.object_detection('yolo4-mscoco')
1717
json_result = net(original_image)
18-
print(type(json_result))
1918
image = visualize.draw_boxes_and_labels_to_image_with_json(image, json_result, class_names)
2019
image = Image.fromarray(image.astype(np.uint8))
2120
image.show()

0 commit comments

Comments
 (0)