Albert Ugwudike, Joe Arrowsmith, Joonsu Gha, Kamal Shah, Lapo Rastrelli, Olivia Gallupova, Pietro Vitiello
- SegNet
- Vanilla UNet
- Attention UNet
-
Multi-res UNet - R2_UNet
- R2_Attention UNet
- UNet++
- 100-layer Tiramisu
- DeepLabv3+
- 3D UNet
- Relative 3D UNet
- Slice 3D UNet
- VNet
- Relative VNet
- Slice VNet
Model | Input Shape | Loss | Val Loss | Duration / Min |
---|---|---|---|---|
Small Highwayless 3D UNet | (160,160,160) | 0.777 | 0.847 | 86.6 |
Small 3D UNet | (160,160,160) | 0.728 | 0.416 | 89.1 |
Small Relative 3D UNet | (160,160,160),(3) | 0.828 | 0.889 | 90.1 |
Small VNet | (160,160,160) | 0.371 | 0.342 | 89.5 |
Training Loss | Training Progress |
---|---|
Training Loss | Training Progress |
---|---|
Training Loss | Training Progress |
---|---|
Training Loss | Training Progress |
---|---|
Model | Input Shape | Loss | Val Loss | Roll Loss | Roll Val Loss | Duration / Min |
---|---|---|---|---|---|---|
Tiny | (64,64,64) | 0.627 ± 0.066 | 0.684 ± 0.078 | 0.652 ± 0.071 | 0.686 ± 0.077 | 61.5 ± 5.32 |
Tiny | (160,160,160) | 0.773 ± 0.01 | 0.779 ± 0.019 | 0.778 ± 0.007 | 0.787 ± 0.016 | 101.8 ± 2.52 |
Small | (160,160,160) | 0.648 ± 0.156 | 0.676 ± 0.106 | 0.656 ± 0.152 | 0.698 ± 0.076 | 110.1 ± 4.64 |
Small Relative | (160,160,160),(3) | 0.653 ± 0.168 | 0.639 ± 0.176 | 0.659 ± 0.167 | 0.644 ± 0.172 | 104.6 ± 9.43 |
Slice | (160,160,5) | 0.546 ± 0.019 | 0.845 ± 0.054 | 0.559 ± 0.020 | 0.860 ± 0.072 | 68.6 ± 9.68 |
Small | (240,240,160) | 0.577 ± 0.153 | 0.657 ± 0.151 | 0.583 ± 0.151 | 0.666 ± 0.149 | 109.7 ± 0.37 |
Large | (240,240,160) | 0.505 ± 0.262 | 0.554 ± 0.254 | 0.508 ± 0.262 | 0.574 ± 0.243 | 129.2 ± 0.50 |
Large Relative | (240,240,160),(3) | 0.709 ± 0.103 | 0.880 ± 0.078 | 0.725 ± 0.094 | 0.913 ± 0.081 | 148.6 ± 0.20 |
Baseline results from training VNet models for 50 epochs, exploring how quick models converge. Models optimized for dice loss using a scheduled Adam optimizier. Start learning rate: $5e^{-5}$, Schedule drop: $0.9$, Schedule drop epoch frequency: $3$. Z-Score normalisation and replacement of outliers with mean pixel was applied to inputs. Subsamples were selected normally distributed from the centre. Github commit: cb39158
Optimal training session is choosen for each visulation.
Training Loss | Training Progress |
---|---|
Training Loss | Training Progress |
---|---|
Training Loss | Training Progress |
---|---|
Training Loss | Training Progress |
---|---|
Training Loss | Training Progress |
---|---|
Training Loss | Training Progress |
---|---|
Training Loss | Training Progress |
---|---|
Training Loss | Training Progress |
---|---|
Run 3D Train
python Segmentation/model/vnet_train.py
Unit-Testing and Unit-Test Converage
python -m pytest --cov-report term-missing:skip-covered --cov=Segmentation && coverage html && open ./htmlcov.index.html
Start tensorboard on Pompeii
On pompeii: tensorboard --logdir logs --samples_per_plugin images=100
On your local machine: ssh -L 16006:127.0.0.1:6006 username@ip
Go to localhost: http://localhost:16006/
Batch / GPU | Crop Size | Depth Crop Size | Num Channels | Num Conv Layers | Kernel Size |
---|---|---|---|---|---|
1 | 32 | 32 | 20 | 2 | (5,5,5) |
1 | 64 | 64 | 32 | 2 | (3,3,3) |
1 | 64 | 64 | 32 | 2 | (5,5,5) |
3 | 64 | 32 | 16 | 2 | (3,3,3) |