-
Notifications
You must be signed in to change notification settings - Fork 0
/
fastspi_avr.h
314 lines (262 loc) · 10.7 KB
/
fastspi_avr.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#ifndef __INC_FASTSPI_AVR_H
#define __INC_FASTSPI_AVR_H
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Hardware SPI support using USART registers and friends
//
// TODO: Complete/test implementation - right now this doesn't work
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// uno/mini/duemilanove
#if defined(AVR_HARDWARE_SPI)
#if defined(UBRR0)
template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER>
class AVRUSARTSPIOutput {
Selectable *m_pSelect;
public:
AVRUSARTSPIOutput() { m_pSelect = NULL; }
AVRUSARTSPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }
void init() {
UBRR0 = 0;
UCSR0A = 1<<TXC0;
FastPin<_CLOCK_PIN>::setOutput();
FastPin<_DATA_PIN>::setOutput();
UCSR0C = _BV (UMSEL00) | _BV (UMSEL01); // Master SPI mode
UCSR0B = _BV (TXEN0) | _BV (RXEN0); // transmit enable and receive enable
// must be done last, see page 206
UBRR0 = 3; // 2 Mhz clock rate
}
static void stop() {
// TODO: stop the uart spi output
}
static void wait() __attribute__((always_inline)) { while(!(UCSR0A & (1<<UDRE0))); }
static void waitFully() __attribute__((always_inline)) { wait(); }
static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { UDR0 = b;}
static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { UDR0 = b; wait(); }
static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); UDR0 = b; }
static void writeWord(uint16_t w) __attribute__((always_inline)) { writeByte(w>>8); writeByte(w&0xFF); }
template <uint8_t BIT> inline static void writeBit(uint8_t b) {
if(b && (1 << BIT)) {
FastPin<_DATA_PIN>::hi();
} else {
FastPin<_DATA_PIN>::lo();
}
FastPin<_CLOCK_PIN>::hi();
FastPin<_CLOCK_PIN>::lo();
}
void select() { if(m_pSelect != NULL) { m_pSelect->select(); } } // FastPin<_SELECT_PIN>::hi(); }
void release() {
// wait for all transmissions to finish
while ((UCSR0A & (1 <<TXC0)) == 0) {}
if(m_pSelect != NULL) { m_pSelect->release(); } // FastPin<_SELECT_PIN>::hi();
}
static void writeBytesValueRaw(uint8_t value, int len) {
while(len--) { writeByte(value); }
}
void writeBytesValue(uint8_t value, int len) {
select();
while(len--) {
writeByte(value);
}
release();
}
// Write a block of n uint8_ts out
template <class D> void writeBytes(register uint8_t *data, int len) {
uint8_t *end = data + len;
select();
while(data != end) {
#if defined(__MK20DX128__)
writeByte(D::adjust(*data++));
#else
// a slight touch of delay here helps optimize the timing of the status register check loop (not used on ARM)
writeByte(D::adjust(*data++)); delaycycles<3>();
#endif
}
D::postBlock(len);
release();
}
void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }
// write a block of uint8_ts out in groups of three. len is the total number of uint8_ts to write out. The template
// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
template <uint8_t SKIP, class D, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
uint8_t *end = data + len;
select();
while(data != end) {
writeByte(D::adjust(data[SPI_B0], scale));
writeByte(D::adjust(data[SPI_B1], scale));
writeByte(D::adjust(data[SPI_B2], scale));
data += SPI_ADVANCE;
}
D::postBlock(len);
release();
}
template <uint8_t SKIP, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<SKIP, DATA_NOP, RGB_ORDER>(data, len, scale);
}
template <class D, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, D, RGB_ORDER>(data, len, scale);
}
template <EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, DATA_NOP, RGB_ORDER>(data, len, scale);
}
void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, DATA_NOP, RGB>(data, len, scale);
}
};
#endif
#if defined(SPSR)
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
// Hardware SPI support using SPDR registers and friends
//
// Technically speaking, this uses the AVR SPI registers. This will work on the Teensy 3.0 because Paul made a set of compatability
// classes that map the AVR SPI registers to ARM's, however this caps the performance of output.
//
// TODO: implement ARMHardwareSPIOutput
//
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <uint8_t _DATA_PIN, uint8_t _CLOCK_PIN, uint8_t _SPI_CLOCK_DIVIDER>
class AVRHardwareSPIOutput {
Selectable *m_pSelect;
bool mWait;
public:
AVRHardwareSPIOutput() { m_pSelect = NULL; mWait = false;}
AVRHardwareSPIOutput(Selectable *pSelect) { m_pSelect = pSelect; }
void setSelect(Selectable *pSelect) { m_pSelect = pSelect; }
void setSPIRate() {
SPCR &= ~ ( (1<<SPR1) | (1<<SPR0) ); // clear out the prescalar bits
bool b2x = false;
if(_SPI_CLOCK_DIVIDER >= 128) { SPCR |= (1<<SPR1); SPCR |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 64) { SPCR |= (1<<SPR1);}
else if(_SPI_CLOCK_DIVIDER >= 32) { SPCR |= (1<<SPR1); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 16) { SPCR |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 8) { SPCR |= (1<<SPR0); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 4) { /* do nothing - default rate */ }
else { b2x = true; }
if(b2x) { SPSR |= (1<<SPI2X); }
else { SPSR &= ~ (1<<SPI2X); }
}
void init() {
volatile uint8_t clr;
// set the pins to output
FastPin<_DATA_PIN>::setOutput();
FastPin<_CLOCK_PIN>::setOutput();
#ifdef SPI_SELECT
// Make sure the slave select line is set to output, or arduino will block us
FastPin<SPI_SELECT>::setOutput();
FastPin<SPI_SELECT>::lo();
#endif
release();
SPCR |= ((1<<SPE) | (1<<MSTR) ); // enable SPI as master
SPCR &= ~ ( (1<<SPR1) | (1<<SPR0) ); // clear out the prescalar bits
clr = SPSR; // clear SPI status register
clr = SPDR; // clear SPI data register
clr;
bool b2x = false;
if(_SPI_CLOCK_DIVIDER >= 128) { SPCR |= (1<<SPR1); SPCR |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 64) { SPCR |= (1<<SPR1);}
else if(_SPI_CLOCK_DIVIDER >= 32) { SPCR |= (1<<SPR1); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 16) { SPCR |= (1<<SPR0); }
else if(_SPI_CLOCK_DIVIDER >= 8) { SPCR |= (1<<SPR0); b2x = true; }
else if(_SPI_CLOCK_DIVIDER >= 4) { /* do nothing - default rate */ }
else { b2x = true; }
if(b2x) { SPSR |= (1<<SPI2X); }
else { SPSR &= ~ (1<<SPI2X); }
SPDR=0;
shouldWait(false);
}
static bool shouldWait(bool wait = false) __attribute__((always_inline)) {
static bool sWait=false;
if(sWait) { sWait = wait; return true; } else { sWait = wait; return false; }
// return true;
}
static void wait() __attribute__((always_inline)) { if(shouldWait()) { while(!(SPSR & (1<<SPIF))); } }
static void waitFully() __attribute__((always_inline)) { wait(); }
static void writeByte(uint8_t b) __attribute__((always_inline)) { wait(); SPDR=b; shouldWait(true); }
static void writeBytePostWait(uint8_t b) __attribute__((always_inline)) { SPDR=b; shouldWait(true); wait(); }
static void writeByteNoWait(uint8_t b) __attribute__((always_inline)) { SPDR=b; shouldWait(true); }
template <uint8_t BIT> inline static void writeBit(uint8_t b) {
SPCR &= ~(1 << SPE);
if(b & (1 << BIT)) {
FastPin<_DATA_PIN>::hi();
} else {
FastPin<_DATA_PIN>::lo();
}
FastPin<_CLOCK_PIN>::hi();
FastPin<_CLOCK_PIN>::lo();
SPCR |= 1 << SPE;
shouldWait(false);
}
void select() { if(m_pSelect != NULL) { m_pSelect->select(); } } // FastPin<_SELECT_PIN>::hi(); }
void release() { if(m_pSelect != NULL) { m_pSelect->release(); } } // FastPin<_SELECT_PIN>::lo(); }
static void writeBytesValueRaw(uint8_t value, int len) {
while(len--) { writeByte(value); }
}
void writeBytesValue(uint8_t value, int len) {
//setSPIRate();
select();
while(len--) {
writeByte(value);
}
release();
}
// Write a block of n uint8_ts out
template <class D> void writeBytes(register uint8_t *data, int len) {
//setSPIRate();
uint8_t *end = data + len;
select();
while(data != end) {
// a slight touch of delay here helps optimize the timing of the status register check loop (not used on ARM)
writeByte(D::adjust(*data++)); delaycycles<3>();
}
release();
}
void writeBytes(register uint8_t *data, int len) { writeBytes<DATA_NOP>(data, len); }
// write a block of uint8_ts out in groups of three. len is the total number of uint8_ts to write out. The template
// parameters indicate how many uint8_ts to skip at the beginning and/or end of each grouping
template <uint8_t SKIP, class D, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
//setSPIRate();
uint8_t *end = data + len;
select();
while(data != end) {
if(SKIP & FLAG_START_BIT) {
writeBit<0>(1);
}
// a slight touch of delay here helps optimize the timing of the status register check loop (not used on ARM)
if(false && _SPI_CLOCK_DIVIDER == 0) {
writeByteNoWait(D::adjust(data[SPI_B0], scale)); delaycycles<13>();
writeByteNoWait(D::adjust(data[SPI_B1], scale)); delaycycles<13>();
writeByteNoWait(D::adjust(data[SPI_B2], scale)); delaycycles<9>();
} else if(SKIP & FLAG_START_BIT) {
writeBytePostWait(D::adjust(data[SPI_B0], scale));
writeBytePostWait(D::adjust(data[SPI_B1], scale));
writeBytePostWait(D::adjust(data[SPI_B2], scale));
} else {
writeByte(D::adjust(data[SPI_B0], scale));
writeByte(D::adjust(data[SPI_B1], scale));
writeByte(D::adjust(data[SPI_B2], scale));
}
data += SPI_ADVANCE;
}
D::postBlock(len);
release();
}
template <uint8_t SKIP, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<SKIP, DATA_NOP, RGB_ORDER>(data, len, scale);
}
template <class D, EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, D, RGB_ORDER>(data, len, scale);
}
template <EOrder RGB_ORDER> void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, DATA_NOP, RGB_ORDER>(data, len, scale);
}
void writeBytes3(register uint8_t *data, int len, register uint8_t scale) {
writeBytes3<0, DATA_NOP, RGB>(data, len, scale);
}
};
#endif
#else
// #define FORCE_SOFTWARE_SPI
#endif
#endif