-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_xnli.py
248 lines (196 loc) · 8.44 KB
/
train_xnli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#encoding=utf8
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import time
import os
import numpy as np
import random
from functools import partial
import paddle.nn.functional as F
from paddlenlp.data import Stack, Tuple, Pad, Dict
import paddle
import sys
from paddle.nn import functional as F
from paddle.nn.layer import CrossEntropyLoss
from paddle.io import DataLoader
from paddlenlp.transformers import LinearDecayWithWarmup
from pdchinesebert.modeling import ChineseBertForSequenceClassification
from pdchinesebert.tokenizer import ChineseBertTokenizer
from paddlenlp.datasets import load_dataset
import random
import paddle
import numpy as np
from utils import set_seed
parser = argparse.ArgumentParser()
parser.add_argument("--save_dir", default='outputs/xnli', type=str, help="The output directory where the model checkpoints will be written.")
parser.add_argument("--max_seq_length", default=256, type=int, help="The maximum total input sequence length after tokenization. "
"Sequences longer than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--learning_rate", default=1.5e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0001, type=float, help="Weight decay if we apply some.")
parser.add_argument("--epochs", default=5, type=int, help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion", default=0.1, type=float, help="Linear warmup proption over the training process.")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
parser.add_argument("--seed", type=int, default=2333, help="random seed for initialization")
parser.add_argument("--device", choices=["cpu", "gpu", "xpu"], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--data_path", type=str, default="./data/XNLI", help="The path of datasets to be loaded")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
args = parser.parse_args()
paddle.set_device(args.device)
set_seed(args.seed)
from utils import load_ds_xnli
data_dir = args.data_path
train_path = os.path.join(data_dir,"train.tsv")
dev_path = os.path.join(data_dir,"dev.tsv")
test_path = os.path.join(data_dir,"test.tsv")
train_ds, dev_ds, test_ds= load_ds_xnli(datafiles=[train_path, dev_path,test_path])
model = ChineseBertForSequenceClassification.from_pretrained("ChineseBERT-large",num_classes=3)
tokenizer = ChineseBertTokenizer.from_pretrained("ChineseBERT-large")
print(" | load pretrained model state sucessfully.")
# model = paddle.DataParallel(model)
idx = 1
def convert_example(example, tokenizer, max_seq_length=512, is_test=False):
# global idx
# print(idx, example)
# idx = idx + 1
label_map = {"contradictory":0,"contradiction":0,"entailment":2,"neutral":1}
first, second, third = example['sentence1'], example['sentence2'], example['label']
encoded_inputs = tokenizer(first,second,max_seq_len=max_seq_length)
input_ids = encoded_inputs["input_ids"]
pinyin_ids = encoded_inputs["pinyin_ids"]
label = np.array([label_map[third]], dtype="int64")
assert len(input_ids) <= max_seq_length
return input_ids, pinyin_ids, label
# # 批量数据大小
# batch_size = 32
# # 文本序列最大长度
# max_seq_length = 256
# 将数据处理成模型可读入的数据格式
trans_func = partial(
convert_example,
tokenizer=tokenizer,
max_seq_length=args.max_seq_length)
# 将数据组成批量式数据,如
# 将不同长度的文本序列padding到批量式数据中最大长度
# 将每条数据label堆叠在一起
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=tokenizer.pad_token_id), # input_ids
# Pad(axis=0, pad_val=tokenizer.pad_token_type_id), # token_type_ids
Pad(axis=0, pad_val=0), # pinyin_ids
Stack() # labels
): [data for data in fn(samples)]
# batchify_fn = lambda samples, fn=Dict(
# "input_ids":Pad(axis=0, pad_val=tokenizer.pad_token_id), # input_ids
# "pinyin_ids":Pad(axis=0, pad_val=0), # pinyin_ids
# "labels":Stack(dtype="int64") # labels
# ): fn(samples)
from utils import create_dataloader
# from utils import get_dataloader
train_data_loader = create_dataloader(
train_ds,
mode='train',
batch_size=args.batch_size,
batchify_fn=batchify_fn,
trans_fn=trans_func
)
dev_data_loader = create_dataloader(
dev_ds,
mode='dev',
batch_size=args.batch_size,
batchify_fn=batchify_fn,
trans_fn=trans_func)
test_data_loader = create_dataloader(
test_ds,
mode='test',
batch_size=args.batch_size,
batchify_fn=batchify_fn,
trans_fn=trans_func)
from utils import evaluate
num_training_steps = len(train_data_loader) * args.epochs
lr_scheduler = LinearDecayWithWarmup(args.learning_rate,
num_training_steps, args.warmup_proportion)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [
p.name for n, p in model.named_parameters()
if not any(nd in n for nd in ["bias", "norm"])
]
optimizer = paddle.optimizer.AdamW(
beta1=0.9, beta2=0.98,
learning_rate=lr_scheduler,
epsilon= args.adam_epsilon,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params)
# # # 训练轮次
# epochs = 5
# # 训练过程中保存模型参数的文件夹
# ckpt_dir = "XNLI_ckpt"
# # len(train_data_loader)一轮训练所需要的step数
# num_training_steps = len(train_data_loader) * epochs
# # Adam优化器
# optimizer = paddle.optimizer.AdamW(
# beta1=0.9, beta2=0.98,
# learning_rate=2e-5,
# parameters= model.parameters())
# 交叉熵损失函数
criterion = paddle.nn.loss.CrossEntropyLoss()
# accuracy评价指标
metric = paddle.metric.Accuracy()
print(args)
# 开启训练
global_step = 0
tic_train = time.time()
for epoch in range(1, args.epochs + 1):
for step, batch in enumerate(train_data_loader, start=1):
# print(batch)
input_ids, pinyin_ids, labels = batch
# print(input_ids.shape)
batch_size, length = input_ids.shape
# 喂数据给model
#print(batch)
pinyin_ids = paddle.reshape(pinyin_ids, [batch_size, length, 8])
logits = model(input_ids, pinyin_ids)
# 计算损失函数值
loss = criterion(logits, labels)
# 预测分类概率值
probs = F.softmax(logits, axis=1)
# 计算acc
correct = metric.compute(probs, labels)
metric.update(correct)
acc = metric.accumulate()
global_step += 1
if global_step % 10 == 0:
print(
"global step %d, epoch: %d, batch: %d, loss: %.5f, accu: %.5f, speed: %.2f step/s"
% (global_step, epoch, step, loss, acc,
10 / (time.time() - tic_train)))
tic_train = time.time()
# 反向梯度回传,更新参数
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
if global_step % 100 == 0:
# 评估当前训练的模型
dev_acc = evaluate(model, criterion, metric, dev_data_loader)
test_acc = evaluate(model, criterion, metric, test_data_loader)
if test_acc >= 0.816:
save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# sys.exit(0)
# 保存当前模型参数等
model.save_pretrained(save_dir)
# 保存tokenizer的词表等
tokenizer.save_pretrained(save_dir)